
Software Engineering Large Practical

Stephen Gilmore
(Stephen.Gilmore@ed.ac.uk)

School of Informatics

September 21, 2016



About

I The Software Engineering Large Practical is a 20 point
Level 9 course which is available for Year 3 undergraduate
Informatics students including those on joint degrees.

I It is not available to visiting undergraduate students or
students in Year 4 or Year 5 of their undergraduate studies.

I It is not available to postgraduate students.

I Year 4, Year 5 and postgraduate students have other practical
courses which are provided for them.



Scope

I The Software Engineering Large Practical consists of one large
design and implementation project, done in three parts.

I The first part consists of a proposal document specifying
functional and non-functional requirements on the project.

I The second part is a design document, presenting the plan of
the implementation work which will realise the design.

I The third part is the implementation. This should be a
well-engineered implementation of the previously-supplied
design.



Course timing

Deadline Out of Weight

Part 1 16:00 on Friday 14th October 0/1 0%

Part 2 16:00 on Friday 11th November 100 50%

Part 3 16:00 on Wednesday 21st December 100 50%

I Please note that Part 1 of this practical is for feedback only.

I Parts 2 and 3 are equally weighted and constitute the
assessment for the Software Engineering Large Practical.

I There is no exam paper for this course.



SELP 2016/2017

I The requirement for the Software Engineering Large Practical
is to use the Android Studio development environment to
create an app implemented in Java and XML for an Android
device.

I The app implements a mobile game which allows users to
make words by grabbing letters which are distributed around
the University of Edinburgh’s Central Area.

I Inspired by the games Pokémon GO and Scrabble, the game is
called Grabble.



Frequently asked questions

I I don’t have an Android device. I’ve never written an app
before. How can I do this practical?

I You don’t need to have an Android device to do this practical
exercise. The software which you develop will run on an
emulator which is freely available for Windows, Mac OS X, and
GNU/Linux platforms. There is no expectation that you have
written an app before: you will learn how to do this in the
course of this practical. You may also need to learn more
about Java programming.



A typical map



A typical map (zoom in)



A typical map (zoom in)



Rules of the game

I Letters are collected by visiting their location.

I There is a different set of letters for each day of the week.

I Letters can only be collected once each day. (I.e. having
visited a location to collect a letter it is not possible to move
away from that location and then move back again to collect
the letter a second time.)



Object of the game

I The object of the game is to make seven-letter words out of
the letters which have been collected.

I Each letter has a point value associated with it and a score is
assigned to a word by summing the scores of the letters in the
word.

I The point value of each letter is given below: more
commonly-occurring letters have lower values and less
commonly-occurring letters have higher values.

A B C D E F G H I J K L M

3 20 13 10 1 15 18 9 5 25 22 11 14

N O P Q R S T U V W X Y Z

6 4 19 24 8 7 2 12 21 17 23 16 26



What constitutes a word?

I For the purposes of the game, a seven-letter sequence of
characters is considered to be a word if it appears in the
Official Grabble Dictionary 2016, available on-line at
http://www.inf.ed.ac.uk/teaching/courses/selp/

coursework/grabble.txt

I The Official Grabble Dictionary 2016 will not be updated
during this practical exercise so it is fine to download it and
install it directly in your app.

I However, the dictionary will remain available at the above
address throughout so you can access the online version from
your app if you wish to do this instead.

I The dictionary has 23,869 entries, all of which are seven-letter
words.

http://www.inf.ed.ac.uk/teaching/courses/selp/coursework/grabble.txt
http://www.inf.ed.ac.uk/teaching/courses/selp/coursework/grabble.txt


Letter maps

I There is a Grabble Letter Map for each day of the week, made
available in the Keyhole Markup Language (KML) format used
by Google Earth and other geographic visualisation software.

I The letter map for Sunday is available at:
I http://www.inf.ed.ac.uk/teaching/courses/selp/

coursework/sunday.kml

I The maps for other days are at the same address in KML files
called monday.kml, tuesday.kml, and so on.

http://www.inf.ed.ac.uk/teaching/courses/selp/coursework/sunday.kml
http://www.inf.ed.ac.uk/teaching/courses/selp/coursework/sunday.kml


Loading maps online

The day of the week when the app is started determines the map
which is loaded. This map remains in use until play ends. It is not
necessary to replace one map with another at midnight, if the
game is being played then.

— � —

Unlike the Official Grabble Dictionary 2016, any Grabble Letter
Map may be updated at any time so it is important to use the
on-line version to ensure that you are looking at the correct version
of the map. Downloading and bundling these maps with your
application would not achieve the desired result.



Contents of a letter map

Each letter map contains 1,000 points numbered from 1 to 1,000,
each with an uppercase letter attached. The letters have been
chosen at random and distributed at random. No letter occurs
significantly more often than the others.

— � —

A KML document is a list of Placemarks. Each Placemark
contains a name giving the unique numerical identifier of the place,
a description giving the letter which is available here, and a Point.
A Point has coordinates in the format 〈longitude, latitude, height〉
where the height is always 0 in our maps, and thus can safely be
ignored.



Example letter map

<?xml version=”1.0” encoding=”UTF−8”?>
<kml xmlns=”http://www.opengis.net/kml/2.2”>
<Placemark>
<name>Point 1</name>
<description>N</description>
<Point>
<coordinates>−3.191445668466,55.943001656138,0</coordinates>

</Point>
</Placemark>

...
<Placemark>
<name>Point 1000</name>
<description>Z</description>
<Point>
<coordinates>−3.18622191177665,55.944533100987,0</coordinates>

</Point>
</Placemark>

</kml>



Getting “near” to a letter

I In designing your game you should decide how near a
Placemark the player physically needs to be before they can
be considered to have “grabbed” that letter.

I GPS-based devices cannot determine your true location
perfectly but the Android LocationManager API at least
attempts to determine the accuracy of its estimated location.



Bonus features

I In addition to the game features described above you should
design and implement some Bonus Features, which set your
app apart from others.

I These may be enhancements which are intended to make the
game more interesting to play, or more rewarding, causing the
user to play more frequently, or for longer sessions.

I What the bonus features are is up to you but you could
consider enhancements in areas such as:

I scoreboards and statistics on play;
I setting goals such as word targets or distance targets;
I autocompletion or spelling correction of words;
I play modes (beginner, advanced, expert); or
I user interface modes (night mode, battery-saver mode).

I You are not limited to the items above; this list is only to
prompt you to think about your own bonus features.



Software Engineering aspects

This practical helps you to develop three useful Software
Engineering skills:

I using version control systems: you are to use the Git
version control system to manage the source code of your
application—learning how much and when to commit code is
a useful skill;

I writing automated tests: you are to write automated tests
for your code and submit these together with the source code
of your application; and

I writing readable source code: the Java source code which
you submit will be inspected for clarity and readability (as well
as correctness) so you should try to write clear, easy-to-read
code.



Frequently asked questions

I Can I develop my app on my laptop?
I Yes. You are strongly encouraged to do this because it will

encourage you to investigate the Android SDK and related
libraries. Of course, we recommend taking regular,
well-organised backups.

I Can I implement my app in Ruby/Python/Scala/C# instead?
I No, not for this practical. We need all students to be working

in the same programming language in order to make a fair
assessment.



Frequently asked questions

I Can I develop my app on my laptop?
I Yes. You are strongly encouraged to do this because it will

encourage you to investigate the Android SDK and related
libraries. Of course, we recommend taking regular,
well-organised backups.

I Can I implement my app in Ruby/Python/Scala/C# instead?
I No, not for this practical. We need all students to be working

in the same programming language in order to make a fair
assessment.



Frequently asked questions

I Do I have to develop in Android Studio? I much prefer
Eclipse/Emacs/vi etc.

I You are required to submit an Android Studio project so we
strongly recommend developing in Android Studio for this
practical exercise.

I Do I have to use Git? I much prefer
Subversion/Mercurial/Darcs etc.

I Yes. Git is the chosen version control system for this practical
because it is supported by Android Studio. However, please
note that we are using a local Git repository only: do not
upload your code to GitHub or BitBucket where anyone can
see it!



Frequently asked questions

I Do I have to develop in Android Studio? I much prefer
Eclipse/Emacs/vi etc.

I You are required to submit an Android Studio project so we
strongly recommend developing in Android Studio for this
practical exercise.

I Do I have to use Git? I much prefer
Subversion/Mercurial/Darcs etc.

I Yes. Git is the chosen version control system for this practical
because it is supported by Android Studio. However, please
note that we are using a local Git repository only: do not
upload your code to GitHub or BitBucket where anyone can
see it!



Frequently asked questions

I Is there a specified device for this practical or a specified
Android version?

I No. You can choose an Android device and an Android
version. If you have an Android device then you could choose a
suitable specification for that device, to allow you to test your
app on a real device. If you do not have an Android device
then choose the emulator for a relatively recent device and a
relatively recent version of the Android platform.


