
1

Software Engineering Large Practical

Stephen Gilmore (Stephen.Gilmore@ed.ac.uk)

School of Informatics

Document version 3.0b.

Issued on: December 6, 2016

About

The Software Engineering Large Practical is a 20 point Level 9 course which is available
for Year 3 undergraduate Informatics students including those on joint degrees. It is
not available to visiting undergraduate students or students in Year 4 or Year 5 of their
undergraduate studies. It is not available to postgraduate students. Year 4, Year 5 and
postgraduate students have other practical courses which are provided for them.

Scope

The Software Engineering Large Practical consists of one large design and implemen-
tation project, done in three parts. The first part consists of a proposal document
specifying functional and non-functional requirements on the project. The second part
is a design document, presenting the plan of the implementation work which will realise
the design. The third part is the implementation. This should be a well-engineered
implementation of the previously-supplied design.

Part of the SELP Deadline Out of Weight

Part 1 (Proposal document) 16:00 on Friday 14th October 0/1 0%

Part 2 (Design document) 16:00 on Friday 11th November 100 50%
16:00 on Monday 14th November

Part 3 (Implementation) 16:00 on Wednesday 21st December 100 50%

Please note that Part 1 of this practical is for feedback only. Parts 2 and 3 are equally
weighted and constitute the assessment for the Software Engineering Large Practical.
There is no exam paper for this course.



2

Introduction

The requirement for the Software Engineering Large Practical is to use the Android
Studio development environment to create an app implemented in Java and XML for an
Android device. The app implements a mobile game which allows users to make words
by collecting letters which are distributed around the University of Edinburgh’s Central
Area (see Figure 1 for an example). Inspired by the games Pokémon GO and Scrabble,
the game is called Grabble.

Figure 1: Letters indicated by red pins in the University’s Central Area

Letters are collected by visiting their location. There is a different set of letters for each
day of the week. Letters can only be collected once each day. (I.e. having visited a
location to collect a letter it is not possible to move away from that location and then
move back again to collect the letter a second time.)

— � —

The object of the game is to make seven-letter words out of the letters which have been
collected. Each letter has a point value associated with it and a score is assigned to a
word by summing the scores of the letters in the word. The point value of each letter
is given below: more commonly-occurring letters have lower values and less commonly-
occurring letters have higher values.

A B C D E F G H I J K L M

3 20 13 10 1 15 18 9 5 25 22 11 14

N O P Q R S T U V W X Y Z

6 4 19 24 8 7 2 12 21 17 23 16 26



3

For the purposes of the game, a seven-letter sequence of characters is considered to
be a word if it appears in the Official Grabble Dictionary 2016, available on-line at
http://www.inf.ed.ac.uk/teaching/courses/selp/coursework/grabble.txt

— � —

The Official Grabble Dictionary 2016 will not be updated during this practical exercise
so it is fine to download it and install it directly in your app. However, the dictionary will
remain available at the above address throughout so you can access the online version
from your app if you wish to do this instead. The dictionary has 23,869 entries.

— � —

There is a Grabble Letter Map for each day of the week, made available in the Keyhole
Markup Language (KML) format used by Google Earth and other geographic visualisa-
tion software. The letter maps are available at the following locations:

— http://www.inf.ed.ac.uk/teaching/courses/selp/coursework/sunday.kml
— http://www.inf.ed.ac.uk/teaching/courses/selp/coursework/monday.kml
— http://www.inf.ed.ac.uk/teaching/courses/selp/coursework/tuesday.kml
— http://www.inf.ed.ac.uk/teaching/courses/selp/coursework/wednesday.kml
— http://www.inf.ed.ac.uk/teaching/courses/selp/coursework/thursday.kml
— http://www.inf.ed.ac.uk/teaching/courses/selp/coursework/friday.kml
— http://www.inf.ed.ac.uk/teaching/courses/selp/coursework/saturday.kml

The day of the week when the app is started determines the map which is loaded. This
map remains in use until play ends. It is not necessary to replace one map with another
at midnight, if the game is being played then.

— � —

Unlike the Official Grabble Dictionary 2016, any Grabble Letter Map may be updated
at any time so it is important to use the on-line version to ensure that you are looking
at the correct version of the map. Downloading and bundling these maps with your
application would not achieve the desired result.

— � —

Each letter map contains 1,000 points numbered from 1 to 1,000, each with an uppercase
letter attached. The letters have been chosen at random and distributed at random. No
letter occurs significantly more often than the others.

— � —

The format of the KML files for the letter maps is outlined in Figure 2. A KML document
is a list of Placemarks. Each Placemark contains a name giving the unique numerical
identifier of the place, a description giving the letter which is available here, and a Point.
A Point has coordinates in the format 〈longitude, latitude, height〉 where the height is
always 0.

http://www.inf.ed.ac.uk/teaching/courses/selp/coursework/grabble.txt
http://www.inf.ed.ac.uk/teaching/courses/selp/coursework/sunday.kml
http://www.inf.ed.ac.uk/teaching/courses/selp/coursework/monday.kml
http://www.inf.ed.ac.uk/teaching/courses/selp/coursework/tuesday.kml
http://www.inf.ed.ac.uk/teaching/courses/selp/coursework/wednesday.kml
http://www.inf.ed.ac.uk/teaching/courses/selp/coursework/thursday.kml
http://www.inf.ed.ac.uk/teaching/courses/selp/coursework/friday.kml
http://www.inf.ed.ac.uk/teaching/courses/selp/coursework/saturday.kml


4

<?xml version=”1.0” encoding=”UTF−8”?>
<kml xmlns=”http://www.opengis.net/kml/2.2”>
<Placemark>
<name>Point 1</name>
<description>N</description>
<Point>
<coordinates>−3.19144566846689,55.94300165613873,0</coordinates>

</Point>
</Placemark>
...
<Placemark>
<name>Point 1000</name>
<description>Z</description>
<Point>
<coordinates>−3.1862219117766553,55.94453310098754,0</coordinates>

</Point>
</Placemark>

</kml>

Figure 2: Sample of the KML format used in the letter maps. Point 1 is the letter N,
point 1,000 is the letter Z.

In designing your game you should decide how near a Placemark the player physically
needs to be before they can be considered to have “grabbed” that letter. GPS-based
devices cannot determine your true location perfectly but the Android LocationManager
API at least attempts to determine the accuracy of its estimated location.

— � —

All points on every map have a latitude which lies between 55.942617 and 55.946233.
All points on every map have a longitude which lies between −3.184319 and −3.192473.

Forrest Hill KFC
(55.946233,−3.192473) (55.946233,−3.184319)

↘ ↙

Grabble
is

played
here

↗ ↖
(55.942617,−3.192473) (55.942617,−3.184319)

Top of the Meadows Buccleuch St bus stop



5

Bonus features

In addition to the game features described above you should design and implement some
Bonus Features, which set your app apart from others. These may be enhancements
which are intended to make the game more interesting to play, or more rewarding,
causing the user to play more frequently, or for longer sessions. What the bonus features
are is up to you but you could consider enhancements in areas such as:

• scoreboards and statistics on play;

• setting goals such as word targets or distance targets;

• autocompletion or spelling correction of words;

• play modes (beginner, advanced, expert); or

• user interface modes (night mode, battery-saver mode).

You are not limited to the items above; this list is only to prompt you to think about
your own bonus features.

Software engineering aspects of the practical

This practical helps you to develop three useful Software Engineering skills:

• using version control systems: you are to use the Git version control system
to manage the source code of your application—learning how much and when to
commit code is a useful skill;

• writing automated tests: you are to write automated tests for your code and
submit these together with the source code of your application; and

• writing readable source code: the Java source code which you submit will be
inspected for clarity and readability (as well as correctness) so you should try to
write clear, easy-to-read code.

Frequently asked questions

• I don’t have an Android device. I’ve never written an app before. How can I do
this practical?

– You don’t need to have an Android device to do this practical exercise. The
software which you develop will run on an emulator which is freely available
for Windows, Mac OS X, and GNU/Linux platforms. There is no expectation
that you have written an app before: you will learn how to do this in the course
of this practical. You may also need to learn more about Java programming.



6

• Can I develop my app on my laptop?

– Yes. You are strongly encouraged to do this because it will encourage you to
investigate the Android SDK and related libraries. Of course, we recommend
taking regular, well-organised backups.

• Can I implement my app in Ruby/Python/Scala/C# instead?

– No, not for this practical. We need all students to be working in the same
programming language in order to make a fair assessment.

However, Java is not an arbitrary choice. Java is the most widely used pro-
gramming language for the Android platform and there are many more Java
language resources available online to learn Android development from than
for any other language.

For sound educational reasons, we believe that the choice of Java as the
development language should help most students to complete this practical
on Android successfully.

• Do I have to develop in Android Studio? I much prefer Eclipse/Emacs/vi etc.

– You are required to submit an Android Studio project so we strongly recom-
mend developing in Android Studio for this practical exercise. An Android
project developed in Eclipse uses a different build system from Android Stu-
dio and can require some significant effort to be made to work in Android
Studio.

∗ [If it does not seem possible to use Android Studio on any platform which
you have access to then please contact the course lecturer to discuss
alternative arrangements.]

• Is there a specified device for this practical or a specified Android version?

– No. You can choose an Android device and an Android version. If you have
an Android device then you could choose a suitable specification for that
device, to allow you to test your app on a real device. If you do not have an
Android device then choose the emulator for a relatively recent device and a
relatively recent version of the Android platform. In particular, please note
that backwards compatibility is not a requirement: we do not mind if your
app does not run on older devices.

• I have a server where I can host web services. Can I transfer some of the app’s
functionality to the server side?

– In principle, yes, but please consult the course lecturer with specifics, par-
ticularly with regard to the services made available and the programming
language (or languages) used on the server side. You will also need to submit
your server-side code for assessment, and it too should be readable and clear.



7

Part 1

Software Engineering Large Practical

Stephen Gilmore (Stephen.Gilmore@ed.ac.uk)

School of Informatics

1.1 Introduction

This part of the SELP is zero-weighted: all of the assessment is based on Part 2 and
Part 3 of the practical. Nonetheless, you are strongly encouraged to complete this part.
Completion of this part of the practical will provide useful feedback and guidance on
how to progress with your work.

1.2 Description

This part of the SELP consists of a proposal document specifying functional and non-
functional requirements on the project. This document is a proposal. It forms a basis
for your design and should be modified as necessary in response to the feedback which
you receive. The implementation which you deliver later will not be judged against this
proposal.

— � —

You should specify the functional requirements which your app is to fulfil, including
your current ideas on the bonus features which you will add to the already-specified
requirements. You should also give details of the non-functional requirements of your
app, including decisions which you have made about the kind of Android device (or
devices) that you will target, and the Android version which you will target. You should
explain the factors which influenced your decision. Users of apps are also sensitive to
slow or long-running operations in their apps. Identify any aspects of your application
which you think potentially have long run-times and give a proposal on how you will
deal with these.

— � —

The expected length of this proposal document is between 2 and 4 pages. The choice
of font, font size, and margins is up to you but please consider the readability of your
submission. The submission format is PDF only.



8

1.3 How to submit

Please submit your proposal document from your DICE account using the command:

submit selp 1 proposal.pdf

(Assuming that your proposal is in a document called proposal.pdf.)

1.4 Things to consider

• It is better to promise less and deliver more than to promise more and deliver less,
so don’t make your list of bonus features too long.

• You will need to investigate Android concepts and programming in order to be able
to make informed decisions about the bonus features which you will implement,
and to estimate which aspects of the app may take a long time to execute.



9

Part 2

Software Engineering Large Practical

Stephen Gilmore (Stephen.Gilmore@ed.ac.uk)

School of Informatics

2.1 Introduction

This part and the next part of the SELP are for credit: all of the assessment is based
on Part 2 and Part 3 of the practical, weighted equally.

— � —

Good Scholarly Practice: Please remember the University requirement as regards all
assessed work for credit. Details and advice about this can be found at:

http://web.inf.ed.ac.uk/infweb/admin/policies/academic-misconduct

and links from there. Note that, in particular, you are required to take reasonable mea-
sures to protect your assessed work from unauthorised access. For example, if you put
any such work on a public repository then you must set access permissions appropri-
ately (generally permitting access only to yourself, or your group in the case of group
practicals).

— � —

The Software Engineering Large Practical is not a group practical, so all work that
you submit for assessment must be your own, or be acknowledged as coming from a
publically-available source such as Android tutorial examples, Android sample projects,
or open-source projects hosted on GitHub, BitBucket or elsewhere.

2.2 Using version control

From this point onwards you will be creating XML and Java resources which will form
part of your implementation, to be submitted in Part 3 of this practical. These resources
should be placed under version control using the Git version control system. You are
free to use any private Git repository to keep copies of your work. A suitable hosting
service is BitBucket (https://bitbucket.org/), which currently offers free, private Git
repositories for small projects. Create a login on the BitBucket service and create a
Git repository there referring to Figure 2.3 for instructions on how to set up such a
repository and referring to the course lectures for details on how to commit files into the
repository.

http://web.inf.ed.ac.uk/infweb/admin/policies/academic-misconduct
https://bitbucket.org/


10

Figure 2.3: Creating a private Git repository (https://bitbucket.org/repo/create)

2.3 Description

The second part of the SELP involves the creation of a design document, presenting the
plan of the implementation work which will realise the design. The design document
commits you to certain decisions, which are to be realised in the implementation.

— � —

Your design document should outline the software architecture of your app in terms
of the libraries it will use and dependencies that it will have, together with a list of the
activities which will make up your app.

— � —

Your design document should be illustrated with screenshots of the views which
you have designed for the activities in your app. These can be taken either from the
Android emulator running a (partially complete) version of your app, or from the visual
editor in Android Studio, rendering your XML layouts, with no Java code attached.
Include as many as possible, to give the clearest picture of how your app will work in
practice.

— � —

Your design document should include a definitive list of the bonus features which
are offered by your app. Your implementation will be expected to provide these bonus
features, in addition to being a playable implementation of the Grabble game. The list
which you provide here could be significantly different from the list which you provided
in your proposal document. No penalty will be applied for this.

— � —

The expected length of this design document is between 4 and 8 pages. The choice
of font, font size, and margins is up to you but please consider the readability of your
submission. The submission format is PDF only.

https://bitbucket.org/repo/create


11

2.4 How to submit

Please submit your design document from your DICE account using the command:

submit selp 2 design.pdf

(Assuming that your design is in a document called design.pdf.)

2.5 Marking criteria

The following criteria will be used in determining a mark for your submitted design. The
criteria listed below are in no particular order and none of them is significantly more
important than the others.

• The coverage of the activities which your app will include. Have any major appli-
cation functions been forgotten? is each activity a coherent, self-contained item of
work which needs to be done?

• The completeness of the libraries and dependencies which you list. Have you
included everything which you will need to implement the bonus features which
you are promising?

• The added value provided by the bonus features which you offer. Are they just
some additional decorations or do they actually make the game more interesting
to play, or more rewarding?

• The coherency and consistency of the screens which you show from your applica-
tion. Do they clearly belong to the same app, giving the impression of an app
which has been designed thoughtfully? Do they represent aesthetically-pleasing
design?

2.6 Things to consider

• If in doubt, leave it out. Don’t promise to deliver bonus features which you have
no idea how to implement. Think ahead to your implementation and try to be at
least 80% sure that you know how to implement the features that you are promising
to deliver.

• Although this is a design document, and you do not have to supply any code at this
stage, you are strongly encouraged to begin coding your app now, to clarify your
ideas about various details of Android application structure and to ensure that
you have made a start on the implementation of the app comfortably in advance
of the Part 3 deadline for the SELP.



12

Part 3

Software Engineering Large Practical

Stephen Gilmore (Stephen.Gilmore@ed.ac.uk)

School of Informatics

3.1 Introduction

As noted above, this part and the previous part of the SELP are for credit: all of the
assessment is based on Part 2 and Part 3 of the practical, weighted equally.

— � —

The third part is the implementation. This should be a well-engineered implementation
of the previously-supplied design. The code which you submit for assessment should be
readable, well-structured, and thoroughly tested. Any automated tests which you have
written for your code should also be submitted. For your Android app, these should be
in the test or androidTest folders of your project.

3.2 Documentation

Please submit documentation describing your implementation. You should use this to
report information such as the following, and any other special features of your imple-
mentation which would be relevant for the marker to know.

• Algorithms and data structures used for the core functions of the implementation.
Describe the algorithms and data structures which are used in your implementation
for:

– download and parsing of the daily Grabble letter map from the server;

– efficient lookup of words in the Grabble dictionary; and

– efficient detection of the letters which can be grabbed at the user’s current
location.

• Parts of your design which have not been realised in the implementation. It could
be that you have not been able to implement something which you had planned in
your design. If so, document that here.

• Additional features of your implementation which were not described in your de-
sign. It could be that you have implemented something which you had not planned
in your design. If so, document that here.



13

• Your use of version control systems to manage your project source code. Which
parts of your project were archived in a version control system? Give details of
the repository which you used.

– If you have used BitBucket for your project then please give BitBucket user
stephengilmore read access to your repository.

– NEW: If you have used GitHub for your project then please give GitHub user
sgilmore read access to your repository.

• The types of testing which you applied to your implementation. Provide details
of the types of testing which you applied to your project. Did you test on the
emulator only, or also on a physical device? Do you have instrumented tests for
your application (in androidTest)? Do you have unit tests for your application
(in test).

• (Only if relevant1.) Instructions for installing the server-side part of your project,
if you have one. If you have a server-side component to your project implemented
in Python, PHP, Ruby on Rails, or similar, then provide details of how to install
and run this component.

— � —

The expected length of this document is between 2 and 4 pages, but longer submissions
will also be accepted. The choice of font, font size, and margins is up to you but please
consider the readability of your submission. The submission format is PDF only.

3.3 Preparing your submission

• Create a new folder to contain your submission. Assuming that your folder is
called grabble, create two sub-folders grabble/doc and grabble/android.

Place a copy of your documentation in the grabble/doc folder and place a copy
of your Android Studio project in the grabble/android folder.

(Only if relevant.) If your submission has a server-side component then create a
third sub-folder called grabble/server and place a copy of your server-side code
in there.

• (Optional, you can skip this step if you wish to.) You can make the submitted
file smaller in size by removing any precompiled code from your Android Studio
project. Specifically, you can remove the folders grabble/android/build and
grabble/android/app/build. The contents of these folders will be regenerated
when your project is loaded into Android Studio for testing.

1Depending on the bonus features which you decided to implement, a server-side component might
have been required; if you do not have one then you need not include anything on this in your document.



14

• (Optional, you can skip this step if you wish to.) You can remove any keys which
you have generated for Google Maps or other APIs. Replace these with the text
YOUR KEY HERE.

• Make a compressed version of your folder using ZIP compression.

– On Linux systems use the command zip -r grabble.zip grabble .

– On Windows systems use Send to > Compressed (zipped) folder.

– On Mac systems use File > Compress “grabble”.

3.4 How to submit

Please submit your implementation work from your DICE account using the command:

submit selp 3 grabble.zip

(Assuming that your implementation is in a ZIP archive called grabble.zip.)

3.5 Marking criteria

• Your submission should be a playable implementation of the Grabble game, ex-
tended with bonus features of your choosing.

• Bonus features will be evaluated on whether they make the game more interesting
to play, or more rewarding. More significant bonus features are more credit-worthy.

• Your submission should be consistent with your previously-submitted design.

• The game should be robust. Failing with a NullPointerException or other Java
run-time error will be considered a serious fault.

• Your game should correctly assign points to words according to the Grabble table
of letter values (see page 2) such that, for example

value(LOOKING) = 11 + 4 + 4 + 22 + 5 + 6 + 18 = 70.

• Your game should correctly differentiate dictionary words from non-dictionary
words.

• Your game should load the correct Grabble letter map from the server, as deter-
mined by the day of the week when play starts.

• The game should be usably efficient, without significant stalls while playing.

• Your submitted code should be readable and clear.



15

3.6 Things to consider

• Your submitted Java (and other) code will be read and assessed by a person, not
a script. It is not a waste of time to add comments to your code, documenting
your intentions. It is not a waste of time to structure your code well, introducing
private methods and encapsulating code and data structures.

• Logging statements (Log.d and friends) are useful debugging tools for Android
apps. You do not need to remove them from your submitted code. It is fine for
these to appear in your submission.

• All else being equal, a submission with automated tests should receive a higher
mark than one without automated tests. More comprehensive tests are more credit-
worthy.

• All else being equal, a project where a version control system (such as Git) has
been used to manage the project code and resources should receive a higher mark
than one where version control has not been used.


	Introduction
	Description
	How to submit
	Things to consider
	Introduction
	Using version control
	Description
	How to submit
	Marking criteria
	Things to consider
	Introduction
	Documentation
	Preparing your submission
	How to submit
	Marking criteria
	Things to consider

