
The future of software engineering

Perdita Stevens

School of Informatics
University of Edinburgh

Plan

This course is designed from my perspective, of course, and you
have watched or will watch my inaugural lecture which says where
I think SE is going.

The idea today is to play devil’s advocate and look at some very
different perspectives.

I will not put details on the slides, and there may not be a
recording. I will not examine specific facts from what I say, but I
could (have) set a question for which having heard it will help.

Is “software engineering” a thing?

Could it be, should it be?

Lots of software is not built by software engineers...

Bug-free software

Could we achieve it? How?

http://deepspec.org

“In our interconnected world, software bugs and security
vulnerabilities pose enormous costs and risks. The Deep
Specification project addresses this problem by showing how to
build software that does what it is supposed to do, no less and
(just as important) no more: No unintended backdoors that allow
hackers in, no bugs that crash your app, or your computer, or your
car. What the software is supposed to do is called its
specification.”

http://deepspec.org


Process, languages, tools?

Which are most important to getting software that works?

How do advances in SE get made?

Do they just happen?

Do universities matter?

Does Informatics as a subject have a future?

or will it simply be taken for granted that every discipline involves
information and computation?

What does Informatics do that couldn’t be done elsewhere? Is it
really a discipline in its own right?

January/February 2016 IEEE Software

This special issue collected a number of papers under the banner
“The future of software engineering”.

Let’s look at the abstracts: you may like to follow up by reading
the papers (but this is not required).



Toward Data-Driven Requirements Engineering

Walid Maalej ; Maleknaz Nayebi ; Timo Johann ; Guenther Ruhe

Nowadays, users can easily submit feedback about software
products in app stores, social media, or user groups. Moreover,
software vendors are collecting massive amounts of implicit
feedback in the form of usage data, error logs, and sensor data.
These trends suggest a shift toward data-driven user-centered
identification, prioritization, and management of software
requirements. Developers should be able to adopt the requirements
of masses of users when deciding what to develop and when to
release. They could systematically use explicit and implicit user
data in an aggregated form to support requirements decisions. The
goal is data-driven requirements engineering by the masses and for
the masses.

Requirements: The Key to Sustainability

Christoph Becker ; Stefanie Betz ; Ruzanna Chitchyan ; Leticia
Duboc ; Steve M. Easterbrook ; Birgit Penzenstadler ; Norbet
Seyff ; Colin C. Venters

Software’s critical role in society demands a paradigm shift in the
software engineering mind-set. This shift’s focus begins in
requirements engineering. This article is part of a special issue on
the Future of Software Engineering.

Reducing Friction in Software Development
Paris Avgeriou ; Philippe Kruchten ; Robert L. Nord ; Ipek Ozkaya
; Carolyn Seaman

Software is being produced so fast that its growth hinders its
sustainability. Technical debt, which encompasses internal software
quality, evolution and maintenance, reengineering, and economics,
is growing such that its management is becoming the dominant
driver of software engineering progress. It spans the software
engineering life cycle, and its management capitalizes on recent
advances in fields such as source code analysis, quality
measurement, and project management. Managing technical debt
will become an investment activity applying economic theories. It
will effectively address the architecture level and will offer specific
processes and tools employing data science and analytics to
support decision making. It will also be an essential part of the
software engineering curriculum. Getting ahead of the software
quality and innovation curve will inevitably involve establishing
technical-debt management as a core software engineering
practice. This article is part of a special issue on the Future of
Software Engineering.

Crowdsourcing in Software Engineering: Models,
Motivations, and Challenges

Thomas D. LaToza ; Andr van der Hoek

Almost surreptitiously, crowdsourcing has entered software
engineering practice. In-house development, contracting, and
outsourcing still dominate, but many development projects use
crowdsourcing-for example, to squash bugs, test software, or
gather alternative UI designs. Although the overall impact has
been mundane so far, crowdsourcing could lead to fundamental,
disruptive changes in how software is developed. Various
crowdsourcing models have been applied to software development.
Such changes offer exciting opportunities, but several challenges
must be met for crowdsourcing software development to reach its
potential.



Speed, Data, and Ecosystems: The Future of Software
Engineering

Jan Bosch

An evaluation of recent industrial and societal trends revealed
three key factors driving software engineering’s future: speed, data,
and ecosystems. These factors’ implications have led to guidelines
for companies to evolve their software engineering practices. This
article is part of a special issue on the Future of Software
Engineering.

Intelligently Transparent Software Ecosystems

James Herbsleb ; Christian Kstner ; Christopher Bogart

Today’s social-coding tools foreshadow a transformation of the
software industry, as it relies increasingly on open libraries,
frameworks, and code fragments. Our vision calls for new
intelligently transparent services that support rapid development of
innovative products while helping developers manage risk and
issuing them early warnings of looming failures. Intelligent
transparency is enabled by an infrastructure that applies analytics
to data from all phases of the life cycle of open source projects,
from development to deployment. Such an infrastructure brings
stakeholders the information they need when they need it.


