From requirements to modelling 1:
Conceptual modelling

Perdita Stevens

School of Informatics
University of Edinburgh

What is a conceptual class model?

Aka domain model — some authors mean slightly different things
by these two terms, but they are essentially the same thing.

A model that records the key domain concepts and their
relationships in the domain.

Or: the main things your users talk about, and how they know
they are connected.

Does not record things that reflect only this system’s requirements
= robust to changing requirements.

Reference for the vocabulary you'll use.

Plan

» What's a conceptual class model?

» When and why do conceptual class modelling?

Remember the waterfall model?

Conceptual modelling in the waterfall

Nobody truly uses a waterfall process, because you can't
completely settle the requirements before doing anything else.

However, it's a useful strawperson process for understanding the
contribution of activities.

“Software analysis” now old-fashioned term — subsumed partly
under Requirements and partly under Design — but still a useful
idea.

This is where conceptual class modelling fits.

Make sense of the world in which the requirements fit, in order to
design a system.

V model
Operation
Concept of - . and
Operations Ve”';'ﬁgm” Maintenance
. Validation
Project Requirements System
Definition and Verification
Architecture and Validation
Integration, .
Detailed Test, and Project
Design Verification Test and

Integration

Implementation

A

Time

https://commons.wikimedia.org/w/index.php?curid=10275054

Process in a nutshell

This is not a course about development process! Brief excursion on
what you need to know...

» waterfall never worked:;

» real processes are iterative;

» they vary in how the iterativeness is controlled;

» high ceremony, e.g. V model, Rational Unified Process

» low ceremony, e.g. most agile processes, e.g. Extreme
Programming

The future: combine agility with modelling...

Spiral model

A Cumulative cost

1.Determine Progress 2. Identify and
objectives /——-*“_—‘*- resolve risks

Detailed
design

Review @

Implementation
4. Plan the Release

next iteration 3. Development
and Test

https://commons.wikimedia.org/w/index.php?curid=9000950

https://commons.wikimedia.org/w/index.php?curid=10275054
https://commons.wikimedia.org/w/index.php?curid=9000950

Rational Unified Process

Phases
Disciplines | | Inception|| Elaboration | Construction | Transition |

Business Modeling
Requirements

Analysis & Design

Implementation
Test
Deployment

Configuration
& Change Mgmt

Project Management ..-_,_.--....—-.....—.....—_-—_‘.-.
Environment .-__-—— h—-

o e T

Iterations
T —

Artefacts to end up with (eventually)

1. Complete set of use case descriptions, summarised in a use
case diagram.
Each use case description describes, step by step, the required
interaction between the actors and the system.
It describes both the usual (“sunny day") scenarios, and any
alternative scenarios (e.g., what should happen when things
go wrong).

2. A conceptual class model that forms the basis of the system
design.
The classes in the model must have appropriate attributes,
associations and operations (this is the hard part!)

Modelling in the SE process

In this course we are largely process-agnostic
but we assume that models are first-class artefacts
supporting quality in design
That may mean
» key diagrams live on the whiteboard and get updated;

» or they're signed off in a design document;

» or they live in a tool and code is generated from them.

Which comes first?

The use cases, or the conceptual class model?

Really both:

» need some idea of requirements, i.e. actors and use case
names, to get started,

» key domain concepts emerge as you learn details of use cases;

» it's very helpful to keep the terminology of the use case
descriptions and the conceptual class model consistent;

» so refine them together, until both are solid and consistent.

Reminder: noun identification Suggested follow-up

In Inf2C-SE you met the idea of identifying candidate classes by

underlining noun phrases in a system description, then eliminating

things that weren't classes.

This is still the key idea. We add identification of Read up on the processes mentioned (Wikipedia articles are good

» relationships between classes and objects (associations, starting points).

generalisations)
» data associated with objects (attributes)
» constraints on configurations of objects and their states

» and later, behaviour of objects (operations)

