Problem 8

1 The basic problem

When one object (which we’ll call the subject) changes state, one or more other
objects (which we’ll call the dependents) need to know about it so that their
states remain consistent.

Consider, for example, a system with a (decoupled) user interface. Elements
of the user interface may need to display an up to date version of the state of
an object inside the system (a customer’s balance, or whatever).

2 An initial solution...

3 A standard solution: OBSERVER

The subject (shown here as ConcretePublisher) inherits from an abstract class
Publisher which maintains a collection of subscribers to this subject; that is,
objects which should be notified when the state changes.

notify: AN Publisher
forall s in -@subscribers -
subscribers { Subscriber
s —> update() ‘subscribe() 1 0.* ‘update()
unsubscribe()
Bnotify()
ConcretePublisher ConcreteSubscriber
SEystate SsmyPublisher
" myState
‘getSlate() 1 0.
#ichangeState() Supdate()
getState: |
return state
myState =
changeState: myPublisher—> getState()
is any method that changes
state

In the code of the subject (the ConcretePublisher), when the state is changed
the subject sends itself the message notify. The code for acting on this message
is in the Publisher class; it notifies all the current subscribers.

ConcretePublisher ConcreteSubscriber
changeState(42) |

_someClient:? ————————! ! !
| :| notify() | |
| I I
| | update() | |
1 1 getState() | |
| | update() | |

| getState()

4 When and why is this solution good?

