
signaling and space
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Figure 3: The number of As is no longer spatially homogeneous at steady state -because red are slower.

[3] Jorg Stelling and Boris N Kholodenko. Signaling cascades as cellular devices for spatial
computations. J Math Biol, 58(1-2):35–55, 2009 Jan.
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quick intro

Cell signaling is spatially heterogeneous even at 
steady state

signals sometimes generate spatially heterogeneous 
steady states, eg gradients of pho’ed proteins

done via microdomains on membranes or 
organelles, anchored Kinases, and anchored dual 
Kinases-Pho’ases

all this depends on shape, and size!
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Turing patterns

Turing-pattern formation in a reaction-diffusion 
medium:

- long-range inhibition (fast diffusing inhibitor) 

- short-range activation (slow diffusing activator)

8 Belousov-Zhabotinsky

From http://www.sciencemag.org/content/331/6022/1309.full: one gets various 3D steady
states for this reaction-diffusion system.

Spots (A), hexagonal close-packing (B), labyrinthine (C), tube (D), half-pipe (E), and lamellar
(F) - emerging from asymmetric (A), (B), and (E), symmetric (D) and (F), and random (C) initial
conditions in a cylindrical domain.

Numerical results are obtained from the model:

dx/dt = (1/�)(fz(q − x)/(q + x) + x(1−mz)/(�1 + 1−mz)− x2) +∆x
dz/dt = x(1−mz)/(�1 + 1−mz)− z + dz∆z

- x the activator and z the inhibitor
- dz = 10 is the ratio of diffusion coefficients Dz/Dx
- t is time
- q = 0.0002, m = 0.0007, �1 = 0.02, � = 2.2; f = (A)1.1, (B) 0.93, (C) to (F) 0.88.
- size of domains: diameter = 20 (A) to (C) and (F), 14 (D) and (E), height = 40.
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simple diffusion-reaction
discrete
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discrete model

1 Quickish bio intro

Cell signaling is spatially heterogeneous even at steady state [1]; this means signals sometimes

generate spatially heterogeneous steady states, eg gradients of pho’ed proteins. The way this

is done is via microdomains on membranes or organelles, AKAPs (anchored kinases), and dual

modifiers anchored differently; all this depends on shape, and size!

This spatial dependency of the cell state can be used:

- 1) to segregate/insulate transient local subnetworks (eg specificity) in which case space is used

as scratch paper,

- or 2) to feed into spatial processes, eg to trigger polarization, division, motion, in which case

is part of the output of the “computation” itself, not just a means to an end.

synbio:

GK + sequential composition + spatial allocation of agents

discrete explanation of reaction/diffusion PDEs

2 Diffusion

Consider an agent type A(loc~{0..9},a~{blue,red}).

The internal state of A’s a site can take two values, blue and red, while the internal state of A’s

loc can take any of ten values and is interpreted as a location (or a compartment, or a discrete

space coordinate).

One has the following diffusion rules expressing a 1D spatial arrangement of compartments:

A(loc~0) <-> A(loc~1) @ 1,1
A(loc~1) <-> A(loc~2) @ 1,1
A(loc~2) <-> A(loc~3) @ 1,1
A(loc~3) <-> A(loc~4) @ 1,1
A(loc~4) <-> A(loc~5) @ 1,1
A(loc~5) <-> A(loc~6) @ 1,1
A(loc~6) <-> A(loc~7) @ 1,1
A(loc~7) <-> A(loc~8) @ 1,1
A(loc~8) <-> A(loc~9) @ 1,1

Note that the global spatial structure is implicit in the diffusion terms, we could make it a ring,

a torus, anything . . . the number on the right of the (reversible) reactions are the forward and

backward stochastic rates.

Initial conditions:

%init: 100 * (A(a~blue,loc~9))
%init: 100 * (A(a~red,loc~0))

Assuming a rate of 1 for migration rules and writing ai for the number of instances of A(loci),

one has at steady state:

a0 = a1

2ai = ai−1 + ai+1 if 0 < i < m− 1

am−1 = am−2

1
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steady state

steady state is homogeneous
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steady state - balance

Assuming a rate of 1 for migration rules and writing ai for the number of instances of A(loci),
one has at steady state:

a0 = a1

2ai = ai−1 + ai+1 if 0 < i < m− 1
am−1 = am−2

So ai = N/m, with N the number of compartments, N = 200 the number of agent As.

The above is a pure diffusion system; the steady state is homogeneous.

The equations above are the discrete analogue of the following PDE, with boundary conditions
at both ends of our 1D space say the interval [0, 1]:

∂ta(x, t) = d∂2
xa(x, t) for x ∈ (0, 1)

∂ta(0, t) = d(∂xa)(0, t) for x = 0
∂ta(1, t) = −d(∂xa)(1, t) for x = 1

There is a similar condition at the other end, if there is another end. The quantity ar(x) is
now understood as a linear density on some interval say [0, 1]. It would be interesting to fully
understand the transformation and simulate the continuous system too.

2.2 Diffusion and a reaction

Let us add now a reaction viz. a ‘red source’ at loc0:

’red 0’ A(loc~0,a~blue) -> A(loc~0,a~red) @ 10
’blue’ A(a~red) -> A(a~blue) @ 1

# Simulation observables:
%obs: ’A*@0’ A(a~red,loc~0)
%obs: A(a~red,loc~1)
%obs: A(a~red,loc~2)
%obs: A(a~red,loc~3)
%obs: A(a~red,loc~4)
%obs: A(a~red,loc~5)
%obs: A(a~red,loc~6)
%obs: A(a~red,loc~7)
%obs: A(a~red,loc~8)
%obs: A(a~red,loc~9)

At steady state (negative fluxes on the left, positive on the right):

dar
0 + k�ar

0 = dar
1 + kab

0

dab
0 + kab

0 = dab
1 + k�ar

0

2dar
i + k�ar

i = dar
i−1 + dar

i+1 if 0 < i < 9
2dab

i = dab
i−1 + dab

i+1 + k�ar
i if 0 < i < 9

dar
9 + k�ar

9 = dar
8

dab
9 = dab

8 + k�ar
9

where:
- ar

i , ab
i denote the number of A(loc~i,a~red) and A(loc~i,a~blue),

- k� is the red to blue rate (cooling rate, a diffuse reaction),

2
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heat source at 0

So ai = N/m, with N the number of compartments, N = 200 the number of agent As.

The above is a pure diffusion system.

The equations above are the discrete analogue of the following PDE, with boundary conditions
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There is a similar condition at the other end, if there is another end. The quantity ar(x) is

now understood as a linear density on some interval say [0, 1]. It would be interesting to fully

understand the transformation and simulate the continuous system too.

Let us add now a reaction viz. a ‘red source’ at loc0:

’red 0’ A(loc~0,a~blue) -> A(loc~0,a~red) @ 10
’blue’ A(a~red) -> A(a~blue) @ 1

At steady state (negative fluxes on the left, positive on the right):
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9

where:

- ar
i , ab

i denote the number of A(loc~i,a~red) and A(loc~i,a~blue),
- k� is the red to blue rate (cooling rate, a diffuse reaction),

- k is the blue to red one (heating rate, an anchored reaction),

- and d is the diffusion coefficient

The continuous analogue:

∂tar = d∂2
xar − k�ar

∂tab = d∂2
xab + k�ab

∂tar(0, t) = d∂xar(0, t) + kab(0, t)− k�ar(0, t)
∂tab(0, t) = d∂xab(0, t) + k�ar(0, t)− kab(0, t)

By summing the equations above for a fixed location that one finds back the initial set of equations

for ai, so ar
i +ab

i = N/m (there is no ‘mass gradient’ at this stage). Confusing the colours cancels

the colour rules and we are back with the first purely diffusive rule set (recall that N is the total

number of agents, and m the number of locations).

Fig. 1-2 give a simulation for k = 10, k� = 1, d = 1, m = 10, N = 200. One tracks ar
i for i = 0

to 9 as function of time. One can identify each curve, and even guess the initial state of the

simulation.

But in this simple linear case (all equations above are linear) we can compute analytically a

(very) good approximation of the steady state value of ar
i .
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kinase at 0, diffusible pho’ase
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simulation

Figure 1: The number of red As in each location loc0 to loc9 over time.

Figure 2: The steady state number of red As at loc0.

Set ar
i+1 = αi+1ar

i gives the recurrence relation:

αi = d/(2d + k� − αi+1d)

so the αi sequence converges quickly -whatever the initial value at loc9 and the strength of the

3
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steady state A(a~red,loc~0)
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guess initial condition
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steady state

Assuming a rate of 1 for migration rules and writing ai for the number of instances of A(loci),
one has at steady state:

a0 = a1

2ai = ai−1 + ai+1 if 0 < i < m− 1
am−1 = am−2

So ai = N/m, with N the number of compartments, N = 200 the number of agent As.

The above is a pure diffusion system; the steady state is homogeneous.
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at both ends of our 1D space say the interval [0, 1]:
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xa(x, t) for x ∈ (0, 1)
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2.2 Diffusion and a reaction
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1 + k�ar

0
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i−1 + dar

i+1 if 0 < i < m− 1
2dab

i = dab
i−1 + dab

i+1 + k�ar
i if 0 < i < m− 1
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m−1 + k�ar

m−1 = dar
m−2

dab
m−1 = dab

m−2 + k�ar
m−1

where:
- ar

i , ab
i denote the number of A(loc~i,a~red) and A(loc~i,a~blue),

- k� is the red to blue rate (cooling rate, a diffuse reaction),

2
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steady state

Assuming a rate of 1 for migration rules and writing ai for the number of instances of A(loci),
one has at steady state:

a0 = a1

2ai = ai−1 + ai+1 if 0 < i < m− 1
am−1 = am−2

So ai = N/m, with N the number of compartments, N = 200 the number of agent As.

The above is a pure diffusion system; the steady state is homogeneous.

The equations above are the discrete analogue of the following PDE, with boundary conditions
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There is a similar condition at the other end, if there is another end. The quantity ar(x) is
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understand the transformation and simulate the continuous system too.
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i denote the number of A(loc~i,a~red) and A(loc~i,a~blue),

- k� is the red to blue rate (cooling rate, a diffuse reaction),
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- k is the blue to red one (heating rate, an anchored reaction),

- and d is the diffusion coefficient

The continuous analogue:

∂tar = d∂2
xar − k�ar

∂tab = d∂2
xab + k�ar

∂tar(0, t) = d∂xar(0, t) + kab(0, t)− k�ar(0, t)
∂tab(0, t) = d∂xab(0, t) + k�ar(0, t)− kab(0, t)
∂tar(1, t) = −d∂xar(1, t)− k�ar(1, t)
∂tab(1, t) = −d∂xab(1, t) + k�ar(1, t)

By summing the equations above for a fixed location that one finds back the initial set of equations

for ai, so ar
i +ab

i = N/m (there is no ‘mass gradient’ at this stage). Confusing the colours cancels

the colour rules and we are back with the first purely diffusive rule set (recall that N is the total

number of agents, and m the number of locations).

Fig. 1-2 give a simulation for k = 10, k� = 1, d = 1, m = 10, N = 200. One tracks ar
i for i = 0

to 9 as function of time. One can identify each curve, and even guess the initial state of the

simulation.

Figure 1: The number of red As in each location loc0 to loc9 over time.

But in this simple linear case (all equations above are linear) we can compute analytically a

(very) good approximation of the steady state value of ar
i .

Set ar
i+1 = αi+1ar

i gives the recurrence relation:

αi = d/(2d + k� − αi+1d)

3

- k is the blue to red one (heating rate, an anchored reaction),

- and d is the diffusion coefficient

The continuous analogue:

∂tar = d∂2
xar − k�ar

∂tab = d∂2
xab + k�ar

∂tar(0, t) = d∂xar(0, t) + kab(0, t)− k�ar(0, t)
∂tab(0, t) = d∂xab(0, t) + k�ar(0, t)− kab(0, t)
∂tar(1, t) = −d∂xar(1, t)− k�ar(1, t)
∂tab(1, t) = −d∂xab(1, t) + k�ar(1, t)

By summing the equations above for a fixed location that one finds back the initial set of equations

for ai, so ar
i +ab

i = N/m (there is no ‘mass gradient’ at this stage). Confusing the colours cancels

the colour rules and we are back with the first purely diffusive rule set (recall that N is the total

number of agents, and m the number of locations).

Fig. 1-2 give a simulation for k = 10, k� = 1, d = 1, m = 10, N = 200. One tracks ar
i for i = 0

to 9 as function of time. One can identify each curve, and even guess the initial state of the

simulation.

Figure 1: The number of red As in each location loc0 to loc9 over time.

But in this simple linear case (all equations above are linear) we can compute analytically a

(very) good approximation of the steady state value of ar
i .

Set ar
i+1 = αi+1ar

i gives the recurrence relation:
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Figure 2: The steady state number of red As at loc0.

so the αi sequence converges quickly -whatever the initial value at loc9 and the strength of the
source!- to the following fixpoint:

0 < α := (1 +
k�

2d
)− (

k�

2d
)1/2(2 +

k�

2d
)1/2 ≤ 1 (1)

which means the ar
i behave roughly as a geometric sequence with factor α (the other fixpoint is

above 1 which is impossible).

This should indicate that the solution for the continuous version of the problem is a decreasing
exponential? Let us write the boundary condition involving the source in the continuous case
but it should be easy to check).

4.4. Assuming a geometric sequence, ie ar
1 = αar

0, prove:

ar
0 =

N

m
· 1

1 + k�

2k (1 +
�

1 + 4d
k� )

(2)

where k is the source rate at loc0, k� the cooling rate (at all locations), d the diffusion rate, and
N/m the agent density.

4.5. Prove that ar
0 the number of red agents at loc0 is decreasing in d, k�, and increasing in k.

Argue that this is intuitively as it should.

4.6. With the values used in the simulation above one gets α = 0.38 and ar
0 = 17.21, does it

compare well with the numerical simulation? (See Fig. 2.)

5. Imagine additional rules that would use the red-blue gradient obtained above (eg discriminate
between two outer signals by having one setting up a red source at the membrane).
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0 =

N

m
· 1

1 + k�

2k (1 +
�

1 + 4d
k� )

(2)

where k is the source rate at loc0, k� the cooling rate (at all locations), d the diffusion rate, and
N/m the agent density.

4.5. Prove that ar
0 the number of red agents at loc0 is decreasing in d, k�, and increasing in k.

Argue that this is intuitively as it should.

4.6. With the values used in the simulation above one gets α = 0.38 and ar
0 = 17.21, does it

compare well with the numerical simulation? (See Fig. 2.)

5. Imagine additional rules that would use the red-blue gradient obtained above (eg discriminate
between two outer signals by having one setting up a red source at the membrane).

4
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pure diffusion PDE/heat equation

1d
∂u

∂t
=
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=
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−ω2

g′
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2
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∑

n
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2
n

2
t sin nπx
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∑
n
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reaction/diffusion PDE

So ai = N/m, with N the number of compartments, N = 200 the number of agent As.

The above is a pure diffusion system.

The equations above are the discrete analogue of the following PDE, with boundary conditions
at both ends of our 1D space say the interval [0, 1]:

∂ta(x, t) = d∂2
xa(x, t) for x ∈ (0, 1)

∂ta(0, t) = d(∂xa)(0, t) for x = 0
∂ta(1, t) = −d(∂xa)(1, t) for x = 1

There is a similar condition at the other end, if there is another end. The quantity ar(x) is
now understood as a linear density on some interval say [0, 1]. It would be interesting to fully
understand the transformation and simulate the continuous system too.

Let us add now a reaction viz. a ‘red source’ at loc0:

’red 0’ A(loc~0,a~blue) -> A(loc~0,a~red) @ 10
’blue’ A(a~red) -> A(a~blue) @ 1

# Simulation observables:
%obs: ’A*@0’ A(a~red,loc~0)
%obs: A(a~red,loc~1)
%obs: A(a~red,loc~2)
%obs: A(a~red,loc~3)
%obs: A(a~red,loc~4)
%obs: A(a~red,loc~5)
%obs: A(a~red,loc~6)
%obs: A(a~red,loc~7)
%obs: A(a~red,loc~8)
%obs: A(a~red,loc~9)

At steady state (negative fluxes on the left, positive on the right):

dar
0 + k�ar

0 = dar
1 + kab

0

dab
0 + kab

0 = dab
1 + k�ar

0

2dar
i + k�ar

i = dar
i−1 + dar

i+1 if 0 < i < 9
2dab

i = dab
i−1 + dab

i+1 + k�ar
i if 0 < i < 9

dar
9 + k�ar

9 = dar
8

dab
9 = dab

8 + k�ar
9

where:
- ar

i , ab
i denote the number of A(loc~i,a~red) and A(loc~i,a~blue),

- k� is the red to blue rate (cooling rate, a diffuse reaction),
- k is the blue to red one (heating rate, an anchored reaction),
- and d is the diffusion coefficient

The continuous analogue:

∂tar = d∂2
xar − k�ar

∂tab = d∂2
xab + k�ab

∂tar(0, t) = d∂xar(0, t) + kab(0, t)− k�ar(0, t)
∂tab(0, t) = d∂xab(0, t) + k�ar(0, t)− kab(0, t)

2

- k is the blue to red one (heating rate, an anchored reaction),

- and d is the diffusion coefficient

The continuous analogue:

∂tar = d∂2
xar − k�ar

∂tab = d∂2
xab + k�ar

∂tar(0, t) = d∂xar(0, t) + kab(0, t)− k�ar(0, t)
∂tab(0, t) = d∂xab(0, t) + k�ar(0, t)− kab(0, t)
∂tar(1, t) = −d∂xar(1, t)− k�ar(1, t)
∂tab(1, t) = −d∂xab(1, t) + k�ar(1, t)

By summing the equations above for a fixed location that one finds back the initial set of equations

for ai, so ar
i +ab

i = N/m (there is no ‘mass gradient’ at this stage). Confusing the colours cancels

the colour rules and we are back with the first purely diffusive rule set (recall that N is the total

number of agents, and m the number of locations).

Fig. 1-2 give a simulation for k = 10, k� = 1, d = 1, m = 10, N = 200. One tracks ar
i for i = 0

to 9 as function of time. One can identify each curve, and even guess the initial state of the

simulation.

Figure 1: The number of red As in each location loc0 to loc9 over time.

But in this simple linear case (all equations above are linear) we can compute analytically a

(very) good approximation of the steady state value of ar
i .

Set ar
i+1 = αi+1ar

i gives the recurrence relation:

αi = d/(2d + k� − αi+1d)

3
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suppose red As are slower

3 state dependent diffusion

But before let us ask what happens to the steady state when the blue and red forms diffuse at

different rates (this is easy to imagine since diffusion is a decreasing function of mass and the

active form of our agent A could become sticky and form complexes which would slow doan its

diffusion).

We use the simpler continuous formulation (with Laplacian notation):

∂tar
= dr∆ar − k�ar

∂tab
= db∆ab

+ k�ar

with boundary conditions:

∂tar
(0, t) = dr∂xar

(0, t) + kab
(0, t)− k�ar

(0, t)
∂tab

(0, t) = db∂xab
(0, t) + k�ar

(0, t)− kab
(0, t)

and:

∂tar
(1, t) = −dr∂xar

(1, t)− k�ar
(1, t)

∂tab
(1, t) = −db∂xab

(1, t) + k�ar
(1, t)

Summing over A’s internal states and supposing steady state (and integrating twice):

dr∆ar
+ db∆ab

= 0

dr∂xar
(0) + db∂xab

(0) = 0

dr∂xar
+ db∂xab

= 0

dr(ar
(x)− ar

(0)) + db(ab
(x)− ab

(0)) = 0

So ar
(x) + ab

(x) is no longer constant in x at steady state.

4 reversible modification cascades and diffusion [3]
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a = a(blue)+a(red) - material gradient 

Figure 3.

Spatial gradients of protein abundance for the phosphorylated form (c, dashed line),

unphosphorylated form (cI, dotted line), and total protein (ctot, solid line). We used Eqs. (9)

and (15) to compute the gradient for c. Parameters were set to realistic values for the Ran

system, namely D = 10 µm2 s-1, DI = 20 µm2 s-1, kI = 5 s-1. Concentrations are normalized

such that c(x=0) = 2 a.u. and cI(x=0) = 1 a.u.

Stelling and Kholodenko Page 17

J Math Biol. Author manuscript; available in PMC 2009 January 1.

N
IH

-P
A

 A
u

th
o

r M
a

n
u

s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n

u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n

u
s
c
rip

t

Monday, 14 March 2011



acyclic case first to be able to track the component sizes easily (because the effect of associa-
tion/dissociations on the connectivity count does not need an exploration of the local connectivity

between the ‘active’ agents) - extension to pseudo-acyclic where cycles are uniquely accessible

via spanning trees?

correctness: organise the various level of descriptions: continuous diffusion/PDE, discrete

diffusion, transport (see above); invariance under re-gridding, ie refining the grid, for high Ds.

bottom-up correctness: for high Ds should converge to the perfectly mixed model

dynamically modify the cell volume(s) (technically just a weight update) to access the Jim

Collins’s ‘extrinsic noise’ narratives

causally erase spatial information (translations are invisible?)

think of parallel implementations:

- especially how draws in parallel in all cells could make sense

- the total representation for ec’s and cc’s might be a better advice for the parallel case

- the cc explorations need to be written differently if concurrent

dark magic: try to piggy-back diffusion on reactions in the simulation engine (for diffusion
limited)?

thermodynamic potential theory and stronger notions of correctness

extension of the language itself:

- spatially heterogeneous initial states (including anchored agents) and rules (eg rules happening

only in a given cell?), and observables

- attachment to membrane (a large agents with sites? eg phospho-lipids) dynamic restrictions

on the δα,α� ; but things might be able to slide along lower dimensions anyway. This introduces

complexes with limited manoeuvrability, another epnalty if one wishes, so in the approach so

far, finer partitioning of Ωd,α in membrane cells. A rough model of the membrane is Russ’s ‘ctm’

trick to make a special end cell have slower diffusion (rekindle the ether and ‘ctm’ projects).

5 Grid step, continuous vs. discrete

The relationship between the discrete grid diffusion rate δh, for steps of length h (size of a cell),

and D the continuous diffusivity is:

D = δh · h2
(2)

NB: h is sometimes called the length scale of the grid.

This equation is similar to the binary volume correction k = γ ·AV .

Dimensions check (do not confuse dimensions with units) [L2T−1] = [T−1][L2].

(One can think of testing different his, say in 1D; an interesting way to check the consistency

of the simulation engine!).

(Also from Turing’s instabilities paper [12, §7])
So:

δh
λ
= δh · λ2

Eg, if h2 = h1/2, ie we get a regridding by subdividing each cell in 2, we get δ2 = 4δ1 (the

diffusion speed squares - related to the Brownian motion being in
√
t).

5.1 Narrow escape, mean first passage time, and transport

The average escape time of a Brownian via a small circular trap of radius � (computable for a

Brownian via the stopping time theorem -see F. Comets §3??) from a domain of volume V :

T =
V

4D
�−1

+O(log(�−1
)) (3)

6

Grid step, continuous vs. discrete
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narrow escape in 3d

Schuss Z et al. PNAS 2007;104:16098-16103
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(from http://dx.doi.org/10.1137/100782620)
Now writing γ1→2 = 1/Tesc for the microscopic transport rate from cell 1 to 2 through the

aperture a, we can derive the relation diffusion/transport (correctness of the transport):

γ2→1

γ1→2
=

V1

V2
=

n1

n2

and at the MC average equilibrium, γ1→2n1 = γ2→1n2 (the real equilibrium is a binomial, see

sbm lecture notes), so
n1

n2
=

V1

V2
, so the concentrations are equal.

6 Diffusion

Consider an agent type A(loc~{0..9},a~{blue,red}).
The internal state of A’s a site can take two values, blue and red, while the internal state

of A’s loc can take any of ten values and is interpreted as a location (or a compartment, or a

discrete space coordinate).

6.1 Pure diffusion

One has the following diffusion rules expressing a 1D spatial arrangement of compartments:

A(loc~0) <-> A(loc~1) @ 1,1
A(loc~1) <-> A(loc~2) @ 1,1
A(loc~2) <-> A(loc~3) @ 1,1
A(loc~3) <-> A(loc~4) @ 1,1
A(loc~4) <-> A(loc~5) @ 1,1
A(loc~5) <-> A(loc~6) @ 1,1
A(loc~6) <-> A(loc~7) @ 1,1
A(loc~7) <-> A(loc~8) @ 1,1
A(loc~8) <-> A(loc~9) @ 1,1

Note that the global spatial structure is implicit in the diffusion terms, we could make it a

ring, a torus, anything . . . the number on the right of the (reversible) reactions are the forward

and backward stochastic rates.

Initial conditions:

%init: 100 * (A(a~blue,loc~9))
%init: 100 * (A(a~red,loc~0))

Assuming a rate of 1 for migration rules and writing ai for the number of instances of A(loci),
one has at steady state:

a0 = a1
2ai = ai−1 + ai+1 if 0 < i < m− 1

am−1 = am−2

So ai = N/m, with N the number of compartments, N = 200 the number of agent As.

The above is a pure diffusion system; the steady state is homogeneous.

The equations above are the discrete analogue of the following PDE, with boundary conditions

at both ends of our 1D space say the interval [0, 1]:

∂ta(x, t) = d∂2
xa(x, t) for x ∈ (0, 1)

∂ta(0, t) = d(∂xa)(0, t) for x = 0

∂ta(1, t) = −d(∂xa)(1, t) for x = 1

7
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anistropic diffusion: d_r=3*d_b

3 state dependent diffusion

But before let us ask what happens to the steady state when the blue and red forms diffuse at

different rates (this is easy to imagine since diffusion is a decreasing function of mass and the

active form of our agent A could become sticky and form complexes which would slow doan its

diffusion).

We use the simpler continuous formulation (with Laplacian notation):

∂tar
= dr∆ar − k�ar

∂tab
= db∆ab

+ k�ar

with boundary conditions:

∂tar
(0, t) = dr∂xar

(0, t) + kab
(0, t)− k�ar

(0, t)
∂tab

(0, t) = db∂xab
(0, t) + k�ar

(0, t)− kab
(0, t)

and:

∂tar
(1, t) = −dr∂xar

(1, t)− k�ar
(1, t)

∂tab
(1, t) = −db∂xab

(1, t) + k�ar
(1, t)

Summing over A’s internal states and supposing steady state (and integrating twice):

dr∆ar
+ db∆ab

= 0

dr∂xar
(0) + db∂xab

(0) = 0

dr∂xar
+ db∂xab

= 0

db(ab
(x)− ab

(0)) = dr(ar
(0)− ar

(x))

So ar
(x)+ab

(x) is no longer constant in x at steady state, and supposing red means slower (heav-

ier -see explanations above), we get a steeper red gradient (and they are opposed) (Fig. 3).

A(loc~0) <-> A(loc~1) @ 3,1
A(loc~1) <-> A(loc~2) @ 3,1
A(loc~2) <-> A(loc~3) @ 3,1
A(loc~3) <-> A(loc~4) @ 3,1
A(loc~4) <-> A(loc~5) @ 3,1
A(loc~5) <-> A(loc~6) @ 3,1
A(loc~6) <-> A(loc~7) @ 3,1
A(loc~7) <-> A(loc~8) @ 3,1
A(loc~8) <-> A(loc~9) @ 3,1

4 reversible modification cascades and diffusion [3]
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the art of cascading

we can compose cascades of reversible 
modifications (in a purely forward fashion here)

and choose

 the wiring between layers

 the anchoring

U

X

D
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A simple cascade:
U -> X -> D

•U(s), X(s~u) -> U(s!1), X(s~u!1)

U(s!1), X(s!1) -> U(s), X(s)

U(s!1), X(s~u!1) -> U(s!1), X(s~p!1)

•X(s~p?,d), D(s~u) -> X(s~p?,d!1), D(s~u!1)

X(d!1), D(s!1) -> X(d), D(s)

X(d!1), D(s~u!1) -> X(d!1), D(s~p!1)
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diffusive cascades
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anchoring cascades
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anchoring cascades
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first wiring
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1st wiring: homogeneization

Figure 5.

Spatial gradients of GTPase activity for a three-step cascade with sequential activation of GEFs.

Only the GEF for the first level was assumed to be concentrated in a narrow zone (grey area),

while all other components were assumed to be freely diffusible. GTPase activities for level 1

(dotted line), level 2 (dashed line) and level 3 (solid line) are shown for three scenarios with

linear dependency between GTPase activity and GEF activity: (A) one-sided activation, (B)

two-sided activation, and (C) central activation zone. Panels (D-F) contain the corresponding

simulation results with Michaelis-Menten type rate laws for GEF activation. Parameters were

set as follows: relative concentrations for all GTPases of one (arbitrary) unit (  a.u.)

identical properties of all GTPases, namely Dn = 1 µm2 s-1, kGEF,n = 2 s-1, kGTPase,n = 0.5 s-1,

 a.u. or 1 a.u. according to the scenario for first-level GEF localization, and Michaelis-

Menten constants for GEF activation KM,GEF,n = 0.25 a.u.
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Figure 5.

Spatial gradients of GTPase activity for a three-step cascade with sequential activation of GEFs.

Only the GEF for the first level was assumed to be concentrated in a narrow zone (grey area),

while all other components were assumed to be freely diffusible. GTPase activities for level 1

(dotted line), level 2 (dashed line) and level 3 (solid line) are shown for three scenarios with

linear dependency between GTPase activity and GEF activity: (A) one-sided activation, (B)

two-sided activation, and (C) central activation zone. Panels (D-F) contain the corresponding

simulation results with Michaelis-Menten type rate laws for GEF activation. Parameters were

set as follows: relative concentrations for all GTPases of one (arbitrary) unit (  a.u.)

identical properties of all GTPases, namely Dn = 1 µm2 s-1, kGEF,n = 2 s-1, kGTPase,n = 0.5 s-1,

 a.u. or 1 a.u. according to the scenario for first-level GEF localization, and Michaelis-

Menten constants for GEF activation KM,GEF,n = 0.25 a.u.

Stelling and Kholodenko Page 19

J Math Biol. Author manuscript; available in PMC 2009 January 1.

N
IH

-P
A

 A
u

th
o

r M
a

n
u

s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n

u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n

u
s
c
rip

t

linear regulation (top), MM (bottom)

Monday, 14 March 2011



# diffusion 
# we rely on id to distinguish agents
A(loc~0) <-> A(loc~1) @ 1,1
A(loc~1) <-> A(loc~2) @ 1,1 
A(loc~2) <-> A(loc~3) @ 1,1 
A(loc~3) <-> A(loc~4) @ 1,1 
A(loc~4) <-> A(loc~5) @ 1,1 
A(loc~5) <-> A(loc~6) @ 1,1 
A(loc~6) <-> A(loc~7) @ 1,1 
A(loc~7) <-> A(loc~8) @ 1,1 
A(loc~8) <-> A(loc~9) @ 1,1 

# uniform cooling reaction
A(a~red) -> A(a~blue) @ 1

# activation source located at loc=0..9
A(i~1,loc~0,a~blue) -> A(i~1,loc~0,a~red) @ 10  

# the remainder of the cascade players are diffusible
A(i~1,loc~0,a~red), A(i~2,loc~0,a~blue) -> A(i~1,loc~0,a~red), A(i~2,loc~0,a~red) @ 10  
A(i~1,loc~1,a~red), A(i~2,loc~1,a~blue) -> A(i~1,loc~1,a~red), A(i~2,loc~1,a~red) @ 10
A(i~1,loc~2,a~red), A(i~2,loc~2,a~blue) -> A(i~1,loc~2,a~red), A(i~2,loc~2,a~red) @ 10
A(i~1,loc~3,a~red), A(i~2,loc~3,a~blue) -> A(i~1,loc~3,a~red), A(i~2,loc~3,a~red) @ 10
A(i~1,loc~4,a~red), A(i~2,loc~4,a~blue) -> A(i~1,loc~4,a~red), A(i~2,loc~4,a~red) @ 10
A(i~1,loc~5,a~red), A(i~2,loc~5,a~blue) -> A(i~1,loc~5,a~red), A(i~2,loc~5,a~red) @ 10
A(i~1,loc~6,a~red), A(i~2,loc~6,a~blue) -> A(i~1,loc~6,a~red), A(i~2,loc~6,a~red) @ 10
A(i~1,loc~7,a~red), A(i~2,loc~7,a~blue) -> A(i~1,loc~7,a~red), A(i~2,loc~7,a~red) @ 10
A(i~1,loc~8,a~red), A(i~2,loc~8,a~blue) -> A(i~1,loc~8,a~red), A(i~2,loc~8,a~red) @ 10
A(i~1,loc~9,a~red), A(i~2,loc~9,a~blue) -> A(i~1,loc~0,a~red), A(i~2,loc~0,a~red) @ 10  

A(i~2,loc~0,a~red), A(i~3,loc~0,a~blue) -> A(i~2,loc~0,a~red), A(i~3,loc~0,a~red) @ 10  
A(i~2,loc~1,a~red), A(i~3,loc~1,a~blue) -> A(i~2,loc~1,a~red), A(i~3,loc~1,a~red) @ 10
A(i~2,loc~2,a~red), A(i~3,loc~2,a~blue) -> A(i~2,loc~2,a~red), A(i~3,loc~2,a~red) @ 10
A(i~2,loc~3,a~red), A(i~3,loc~3,a~blue) -> A(i~2,loc~3,a~red), A(i~3,loc~3,a~red) @ 10
A(i~2,loc~4,a~red), A(i~3,loc~4,a~blue) -> A(i~2,loc~4,a~red), A(i~3,loc~4,a~red) @ 10
A(i~2,loc~5,a~red), A(i~3,loc~5,a~blue) -> A(i~2,loc~5,a~red), A(i~3,loc~5,a~red) @ 10
A(i~2,loc~6,a~red), A(i~3,loc~6,a~blue) -> A(i~2,loc~6,a~red), A(i~3,loc~6,a~red) @ 10
A(i~2,loc~7,a~red), A(i~3,loc~7,a~blue) -> A(i~2,loc~7,a~red), A(i~3,loc~7,a~red) @ 10
A(i~2,loc~8,a~red), A(i~3,loc~8,a~blue) -> A(i~2,loc~8,a~red), A(i~3,loc~8,a~red) @ 10
A(i~2,loc~9,a~red), A(i~3,loc~9,a~blue) -> A(i~2,loc~0,a~red), A(i~3,loc~0,a~red) @ 10  

%init: 100 * (A(i~1,a~blue,loc~5)) 
%init: 100 * (A(i~2,a~blue,loc~5)) 
%init: 100 * (A(i~3,a~blue,loc~5)) 

%obs: A(i~1,a~red,loc~0)
%obs: A(i~2,a~red,loc~0)
%obs: A(i~3,a~red,loc~0)
%obs: A(i~1,a~red,loc~5)
%obs: A(i~2,a~red,loc~5)
%obs: A(i~3,a~red,loc~5)
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stochastic simulation
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Spatial Kappa simulator v1.0.0
https://github.com/donal-s/SpatialKappa
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Figure 6.

Network interactions can result in non-monotonic spatial gradients. (A) In this example, we

assume that GEF activity of the first level is localized at the membrane (grey box), while all

other activities (GTPases abbreviated by Gi, GAPs, GEFs) are freely diffusible. In addition,

we consider the following regulatory interactions (denoted by grey arrows): the first-level

GTPase-GTP activates GAPs of both downstream GTPases and the second GTPase-GTP

induces third-level GAP activity in an additive manner. (B) Simulation results for GTPase

activities at level 1 (dotted line), level 2 (dashed line) and level 3 (solid line). The grey area

denotes localization of first-level GEF activity (i.e. cellular compartments where 

a.u., otherwise this parameter was set to zero). The other parameter values were: Dn = 4 µm2

s-1, kGEF,n = 10 s-1, kGTPase,1 = 1 s-1, kGTPase,2 = kGTPase,3 = 50 s-1, kM,GAP,2 = 0.1, kM,GAP,3

= 2, .
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3rd wiring
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3rd wiring: distance sensitive gradients

Figure 8.

Cascades can establish spatial sensing devices. The simulation results were obtained for the

network configuration shown in Fig. 7. Here, GEF activity of the first level is localized at the

membrane (grey areas at the boundaries). The location of a cellular component (third grey bar,

indicating the location of GAP2 and GAP3) is to be tracked and a signal has to be conveyed

back to the membrane. Panels (A)-(D) show the resulting GTPase gradients (level 1: dotted

lines, level 2: dashed lines, and level 3: solid lines) as the cellular component is moved from

the membrane (left boundary) to the center of the cell. Parameter values are: Dn = 5 µm2 s-1,

kGEF,1 = 10 s-1, kGEF,2 = kGEF,3 = 1 s-1, , kGTPase,1 = kGTPase,2 = 5 s-1, kGTPase,3 = 100

s-1, kM,GAP,2 = kM,GAP,3 = 0.5, kM,GEF,3 = 10, , and  a.u. or 1 a.u. according to

the geometry (see Fig. 7).
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Figure 8.

Cascades can establish spatial sensing devices. The simulation results were obtained for the

network configuration shown in Fig. 7. Here, GEF activity of the first level is localized at the

membrane (grey areas at the boundaries). The location of a cellular component (third grey bar,

indicating the location of GAP2 and GAP3) is to be tracked and a signal has to be conveyed

back to the membrane. Panels (A)-(D) show the resulting GTPase gradients (level 1: dotted

lines, level 2: dashed lines, and level 3: solid lines) as the cellular component is moved from

the membrane (left boundary) to the center of the cell. Parameter values are: Dn = 5 µm2 s-1,

kGEF,1 = 10 s-1, kGEF,2 = kGEF,3 = 1 s-1, , kGTPase,1 = kGTPase,2 = 5 s-1, kGTPase,3 = 100

s-1, kM,GAP,2 = kM,GAP,3 = 0.5, kM,GEF,3 = 10, , and  a.u. or 1 a.u. according to

the geometry (see Fig. 7).
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Figure 8.

Cascades can establish spatial sensing devices. The simulation results were obtained for the

network configuration shown in Fig. 7. Here, GEF activity of the first level is localized at the

membrane (grey areas at the boundaries). The location of a cellular component (third grey bar,

indicating the location of GAP2 and GAP3) is to be tracked and a signal has to be conveyed

back to the membrane. Panels (A)-(D) show the resulting GTPase gradients (level 1: dotted

lines, level 2: dashed lines, and level 3: solid lines) as the cellular component is moved from

the membrane (left boundary) to the center of the cell. Parameter values are: Dn = 5 µm2 s-1,

kGEF,1 = 10 s-1, kGEF,2 = kGEF,3 = 1 s-1, , kGTPase,1 = kGTPase,2 = 5 s-1, kGTPase,3 = 100

s-1, kM,GAP,2 = kM,GAP,3 = 0.5, kM,GEF,3 = 10, , and  a.u. or 1 a.u. according to

the geometry (see Fig. 7).
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Figure 8.

Cascades can establish spatial sensing devices. The simulation results were obtained for the

network configuration shown in Fig. 7. Here, GEF activity of the first level is localized at the

membrane (grey areas at the boundaries). The location of a cellular component (third grey bar,

indicating the location of GAP2 and GAP3) is to be tracked and a signal has to be conveyed

back to the membrane. Panels (A)-(D) show the resulting GTPase gradients (level 1: dotted

lines, level 2: dashed lines, and level 3: solid lines) as the cellular component is moved from

the membrane (left boundary) to the center of the cell. Parameter values are: Dn = 5 µm2 s-1,

kGEF,1 = 10 s-1, kGEF,2 = kGEF,3 = 1 s-1, , kGTPase,1 = kGTPase,2 = 5 s-1, kGTPase,3 = 100

s-1, kM,GAP,2 = kM,GAP,3 = 0.5, kM,GEF,3 = 10, , and  a.u. or 1 a.u. according to

the geometry (see Fig. 7).
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