2 classes

- model-driven design, jim Collins

incremental model construction and calibration

- from "a bottom-up approach to gene regulation"

Nature (2006) vol. 439 (7078) pp. 856-860

incremental modeling with careful calibration at each stage

- both a deterministic (uses a thermo model as we have studied earlier)
- and stochastic model (next class)

model of (random exponential with 20 min doubling time) growth and division (with binomial for plasmid allocation to daughter cells)

incude the dynamics of plasmid duplication (linked to plasmid's origin of replication ...)

Olac

OR1

OR2

-35

OR3

-10

Supplementary Figure 12: The promoter sequence for the $O_R O_{lac}$ promoter. The lac operator site (OLac) and the three λ sites ($O_R 1$, $O_R 2$ and the mutated $O_R 3$) are indicated in the grey boxes. The blue boxes indicate the -10 and -35 RNA polymerase binding sites.

model vs. data strategy:

we want to compute the equilibrium transcription rate, relative to baseline rate (with no TFs at all)

supposing fluorescence is proportional to GFP numbers, and GFP numbers are proportional to said rate; the rate ratio should be the fluo ration: <--- mapping model output to data

we need to:

1- compute the eq. probability of occupancy of the promoter (as a function of the TFs' concentration) in each 3 cases, rep, act and both TFs

2- compute the TF's concentration in each 3 cases as a function of the inputs (IPTG, arabinose) <--- mapping <u>data inputs to model</u>

are in constant nb n(A), n(B),...

this gives p(i) as a function of IAI, IBI,

equilibrium for active TFs: the repressor-only case

repressor-only: laci is a 4-mer, comes in 2 kinds: - with IPTG, TI (weaker binding to Olac, increases the dissoc rate), - and without T (stronger) [1]: short for IPTG concentration [1]~[1]tot

 $K_{d,TI}[TI] = [T][I]$ (1 new param) $f = K_{d,TI}/(K_{d,TI} + [I])$ k31 modified off-rate for TI:OLac $=k'_{31}(f+(1-f)*alpha)$

repressor (1 new param)

 $p(3)/p(1) = [T]/K_{d,TP} * (K_{d,T1} + [1])/(K_{d,T1} + alpha*[1])$

f fraction of 4-mer w/o IPTG = [T]/[T]tot

- $=k'_{31}(K_{d,T1}+alpha[1])/(K_{d,T1}+[1])$
- NB: alpha>1, since IPTG inactivates the

equilibrium for active TFs: the activator-only case

activator-only: c12 a dimer under the indirect influence of arabinose [A]

assume

 $[c_{12}] = [c_{12}]_0 + s [A] (2 new params)$

 $p(2)/p(1) = [c_12]/K_{1,c_1}$ = ([c_12]_0 + s [A])/K_{1,c_1}

equilibrium for active TFs: the repressor and activator case

- combine the two preceding cases no new parameter is needed

p(i)/p(i+A) = ... complicated expression but we know how to write it

parameters 1: promoter equilibrium

Parameter	Description	Value	mean

K_{13}^{eq}	Equilibrium constant for	0.93	1.24
	LacI/IPTG with no CI	nM^{-1}	
K_{12}^{eq}	Equilibrium constant	0.006	5.97×10^{-03}
	for first CI site	nM^{-1}	
	with no LacI bound		
K_{24}^{eq}	Equilibrium constant	0.00138	1.41×10^{-02}
	for the second CI site	nM^{-1}	
	with no LacI bound		
K_{35}^{eq}	Equilibrium constant	0.0117	1.12×10^{-01}
	for the first CI site	nM^{-1}	
	with LacI bound		
K_{46}^{eq}	Equilibrium constant	0.00444	6.27×10^{-01}
	for LacI bound	nM^{-1}	
	with 2 CI bound		

std dev

$$\begin{array}{c} 4.21 \times 10^{-01} \\ 1.43 \times 10^{-04} \\ 4.59 \times 10^{-03} \\ \hline 6.80 \times 10^{-03} \\ 2.13 \times 10^{-01} \end{array}$$

parameters 2: promoter activities

g_2	Relative production rate	1	1.00	5.64×10^{-03}
	for promoter state S_2			
g_3	Relative production rate	0.292	2.92×10^{-01}	$8.67 imes 10^{-04}$
	for promoter state S_3			
g_4	Relative production rate	4.78	4.79	1.03×10^{-02}
	for promoter state S_4			
g_5	Relative production rate	1.31	1.30	3.84×10^{-03}
	for promoter state S_5			
g_6	Relative production rate	3.48	3.48	1.82×10^{-02}
	for promoter state S_6			

parameters 3: IPTG vs laci

α	Ratio of LacI off rates	330	$3.59 imes 10^{02}$	$8.82 imes 10^{01}$
	with and without IPTG			
K^d_{TI}	Equilibrium constant	4.52	4.52	$1.08 imes 10^{-02}$
	for LacI/IPTG	nM		
$\mathrm{T0}$	LacI tetramer concentration	325nM	2.96×10^{02}	1.22×10^{02}

T0	LacI tetramer concentration	325nM	$2.96 imes10^{6}$

parameters 4: arabínose vs cl

$[CI_2]_0$	CI dimer concentration with no arabinose	105nM	1.10×10^{02}	2.08×10^{01}
S	Coefficient related to CI induction	3.85e7	$4.05 imes 10^{07}$	$1.11 imes 10^{07}$

- model-driven design 2, the stochastic case

1- inputs -> steady state of TF concentrations, c12, TI and T

2-TF concentrations -> transition rates (Q matrix) of the promoter CTMC

3- CTMC state -> transcription rate for mRNA -> translation GFP

4- \vee (t) random growth volume with exponential law of which mean \vee (t) = \vee (0) exp(-ln 2 t) (doubling time 1, so time unit = cell cycle; + binomial for plasmid allocation to daughter cells)

5-hígh copy plasmíd Gamma (alpha,beta): mean = alpha*beta = 50, var = alpha*beta² fitted (50 comes from plasmíd's orígín of replícatíon ...)

- 1-transitions of the promoter (negligible)
- 2-transcription/translation
- 3-V(t) random growth

4-binomial allocation of mRNAS, plasmids, GFPS

division. b, Fluorescence level of cells without growth or division.

parameters 2: additional stochastic parameters

time unit = cell cycle = 20 minutes

parameters 3: additional parameters for stochas

Parameter	Description	Valu
$\gamma\prime$	Constitutive CI mRNA synthesis rate	3
,	from OROLac	
pCI	CI mRNA	0.000
	synthesis rate from $pBAD$	
dCI	CI mRNA	3.5
	degradation rate	
pLacI	LacI mRNA	3.4
	synthesis rate	
dLacI	LacI mRNA	3.5
	degradation rate	
γ_{CI}	CI synthesis rate	13.5
δ_{CI}	CI degradation rate	0
γ_{LacI}	LacI synthesis rate	17.5
δ_{LacI}	LacI degradation rate	0
kf_1	CI association rate	1
kb_1	CI dissociation rate	100
kf_2	LacI association rate	1
kb_2	LacI dissociation rate	100
kf_3	LacI2 association rate	1
kb_3	LacI2 dissociation rate	10

stic model of FB model					
ıe					
$6 * (CI_0 + s * ARA) * kb/kf$					

dígression: us

B1 0		JME	33F	75
	THE DOTOR	ASE OF USEFUL	BIOLOGICAL	NUMBERS

home

search

browse

resources

bion of the month

about us

quick submit

login to submit

feedback Didn't find what you looked for? Let us know and we will try to help! (include email for an

submit feedback

answer)

se bí	e bíonumbers! (bíonumbers.hms.harvard.edu)							
35								
	Search tips: Try not limiting organism. Try abbreviations, full names etc., e.g. 'Oxygen' or 'O2'. Disclaimer: Numbers in biology depend highly on conditions. Use values as order of magnitude estimates or refer to experimental details in cited literature. Search							
	Most Popular BioNumbers Most Recent BioNumbers Random BioNumbers Find Terms: cell cycle e.g., ribosome, p53, glucose, CO2 Organism: Bacteria Escherichia coli (836) Image: Colored science scienc							
	Search reset Found 450 results Click a row for more details.							

ID	Property	Organism	Value	Units	Range	Details
103514	Minimal generation time	Bacteria Escherichia coli	20	min		more
102047	Translation bursts of beta-galactosidase per cell cycle	Bacteria Escherichia coli	0.16	unitless		more
102046	Translation bursts of tsr-venus fusion protein per cell cycle	Bacteria Escherichia coli	1.2	unitless		more
101790	"Rule of thumb" for the cell cycle (generation time)	Bacteria Escherichia coli	3000	sec		more

physical vs functional composition

impedance matching - how it is useful to have many versions of a promoter

- The upstream network must be reconfigured to produce TetR instead of Laci - the downstream network must receive a new input Gal4p (Fig. 1a) because TetR and tTA interfere