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The Mythical Man-Month: Essays on Software Engineering is a book on software 

engineering and project management by Fred Brooks, whose central theme is that 

"Adding manpower to a late software project makes it later." This idea is known as 

Brooks' law, and is presented along with the second-system effect and advocacy of 

prototyping. The work was first published in 1975 (0-201-00650-2), reprinted with 

corrections in 1982, and republished as an anniversary edition with four extra chapters 

in 1995 (ISBN 0-201-83595-9) with the essay "No Silver Bullet" and commentary by 

the author.

Brooks's observations are based on his experiences at IBM while managing the 

development of OS/360. He had mistakenly added more workers to a project falling

behind schedule. He also made the mistake of asserting that one project — writing an

Algol compiler — would require six months, regardless of the number of workers

involved. (It required longer.) The tendency for managers to repeat such errors in project

development led Brooks to quip that his book is called "The Bible of Software

Engineering" because "everybody reads it but nobody does anything about it!"
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Ideas presented

The Mythical Man-Month

Assigning more programmers to a project running behind schedule will make it even later, due to the time required for the new 

programmers to learn about the project, as well as the increased communication overhead. When N people have to communicate 

among themselves (without a hierarchy), as N increases, their output M decreases and can even become negative (i.e. the total work 

remaining at the end of a day is greater than the total work that had been remaining at the beginning of that day, such as when many 
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bugs are created).

Group Intercommunication Formula: n(n − 1) / 2

Example: 50 developers -> 50(50 − 1) / 2 = 1225 channels of communication

The Second-system Effect

The second system an engineer designs is the most dangerous system he will ever design since he will tend to incorporate all of the 

additions he originated but did not add (due to the inherent time constraints) to the first system. Thus, when embarking upon a second 

system, an engineer should be mindful that he is susceptible to over-engineering it.

Progress Tracking

Question: How does a large software project get to be one year late? Answer: One day at a time! Incremental slippages on many fronts 

eventually accumulate to produce a large overall delay. Continued attention to meeting small individual milestones is required at each 

level of management.

Conceptual Integrity

To make a user-friendly system, the system must have conceptual integrity, which can only be achieved by separating architecture 

from implementation. A single chief architect (or a small number of architects), acting on the user's behalf, decides what goes in the 

system and what stays out. A "super cool" idea by someone may not be included if it does not fit seamlessly with the overall system 

design. In fact, to ensure a user-friendly system, a system may deliberately provide fewer features than it is capable of. The point is 

that if a system is too complicated to use, then many of its features will go unused because no one has the time to learn how to use 

them.

The Manual

What the chief architect produces are written specifications for the system in the form of the manual. It should describe the external 

specifications of the system in detail, i.e., everything that the user sees. The manual should be altered as feedback comes in from the 

implementation teams and the users.

The Pilot System

When designing a new kind of system, a team will design a throw-away system (whether it intends to or not). This system acts as a 

pilot plant that reveals techniques that will subsequently cause a complete redesign of the system. This second smarter system should 

be the one delivered to the customer, since delivery of the pilot system would cause nothing but agony to the customer, and possibly 

ruin the system's reputation and maybe even the company's.

Formal Documents

Every project manager should create a small core set of formal documents which acts as the roadmap as to what the project objectives 

are, how they are to be achieved, who is going to achieve them, when they are going to be achieved, and how much they are going to 

cost. These documents may also reveal inconsistencies that are otherwise hard to see.

Project Estimation

When estimating project times, it should be remembered that programming products (which can be sold to paying customers) and 

programming systems are both three times as hard to write as in-house programs[1]. It should be kept in mind how much of the 

work-week will actually be spent on technical issues, as opposed to administrative or other non-technical tasks, such as meetings.

Communication

To avoid disaster, all the teams working on a project should remain in contact with each other in as many ways as possible (e-mail, 

phone, meetings, memos etc.) Instead of assuming something, the implementer should instead ask the architects to clarify their intent 
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on a feature he is implementing, before proceeding with an assumption that might very well be completely incorrect.

The Surgical Team

Much as a surgical team during surgery is led by one surgeon performing the most critical work himself while directing his team to 

assist with or overtake less critical parts, it seems reasonable to have a "good" programmer develop critical system components while 

the rest of a team provides what is needed at the right time. Additionally, Brooks muses that "good" programmers are generally 5-10 

times as productive as mediocre ones. See also Organization and Team Patterns

(http://www.dfpug.de/loseblattsammlung/online/workshop/design_patterns/sonstiges.htm) .

Code Freeze and System Versioning

Software is invisible. Therefore, many things only become apparent once a certain amount of work has been done on a new system, 

allowing a user to experience it. This experience will yield insights, which will change a user's needs or the perception of the user's 

needs. The system should, therefore, be changed to fulfill the changed requirements of the user. This can only occur up to a certain 

point, otherwise the system may never be completed. At a certain date, no more changes would be allowed to the system and the code 

would be frozen. All requests for changes should be delayed until the next version of the system.

Specialized Tools

Instead of every programmer having his own special set of tools, each team should have a designated tool-maker who may create tools 

that are highly customized for the job that team is doing, e.g., a code generator tool that spits out code based on a specification. In 

addition, system-wide tools should be built by a common tools team, overseen by the project manager.

Lowering Software Development Costs

There are two techniques for lowering software development costs that Brooks writes about:

Implementers may be hired only after the architecture of the system has been completed (a step that may take several 

months, during which time prematurely-hired implementers may have nothing to do).

Another technique Brooks mentions is not to develop software at all, but to simply buy it "off the shelf" when possible.
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