Reinforcement Learning (INF11010)

Lecture 12: Hierarchy and Abstraction

Pavlos Andreadis, March 20" 2018

Today's Content

* Reward Shaping (briefly)
 Semi-Markov Decision Processes

* Options

O our Car
& OtherCars

* Speed up discovery of ‘good

° behaviour’
‘ * Can lead to suboptimal

—10 —10 —10 behaviour, in terms of original

task (the one without shaping)

An Early Idea: Reward Shaping

11 feet * The robots’ objective is to

. . @ : Home collectively find pucks and
Balifar bring them home.
@a @ sounday * Represent the 12-dim
i environment by state
° variables (features?):
— have-puck?

— at-home?
@ — near-intruder?

" e What should the immediate
reward function be?

[Source: M. Mataric, Reward Functions for Accelerated Learning, ICML 1994]

03/03/2017 6

Reward Shaping

If a reward is given only when a robot drops a puck at home, learning
will be extremely difficult.
— The delay between the action and the reward is large.

Solution: Reward shaping (intermediate rewards).
— Add rewards/penalties for achieving sub-goals/errors:
* subgoal: grasped-puck
* subgoal: dropped-puck-at-home
* error: dropped-puck-away-from-home

Add progress estimators:
— Intruder-avoiding progress function
— Homing progress function

Adding intermediate rewards will potentially allow RL to handle more
complex problems.

O Your Car
OtherCars

o]

* Take action UP until car
appears directly in front of you

(or termination).

 When car in front of you,

initiate ‘manoeuvre’.

* |n ‘manoeuvre’, take action
UP_LEFT.

O Your Car
Other Cars

* Take action UP until car
appears directly in front of you
(or termination).

 When car in front of you,

initiate ‘manoeuvre’.

* |n ‘manoeuvre’, take action
UP_LEFT.

Temporal Abstraction

* What's the issue?
— Want “macro” actions (multiple time steps)
— Advantages:

» Avoid dealing with (exploring/computing values for)
less desirable states

* Reuse experience across problems/regions

 What’s not obvious
— Dealing with the Markov assumption

— Getting the calculations right (e.g., stability and
convergence)

03/03/2017 10

03/03/2017

Semi-Markov Decision Processes

11

Semi-Markov Decision Processes

* A generalization of MDPs:

The amount of time between one decision and the next is a
random variable (either real or integer valued)

* Treat the system as remaining in each state for a random
waiting time

— after which, transition to next state is instantaneous

 Real valued case: continuous time, discrete events

* Discrete case: Decisions only made an integer multiple of an
underlying time step

03/03/2017 12

Semi-Markov Decision Processes

e SMDP is defined in terms of
P(s’,T|s,a): Transition probability (Tis the waiting time)

R(s,a) or just »: Reward, amount expected to accumulate
during waiting time, 7, in particular state and action

* Bellman equation can then be written down as, for all s:

%k — TP / V>|< /
V*(s) C{g%[H;v (s',7|s,a)V*(s")]
\N

Note the need to sum over waiting time, as well.

03/03/2017 13

Semi-Markov Decision Processes

* Likewise, we can write down the Bellman equation for the
state-action value function as,

* — TP / * / /
@ (s,0) =7+ D7 P/ 7ls, @) max @ (')

Vs e S,a € A,

* So, Dynamic Programming algorithms can be naturally
extended to the case of SMDPs as well

03/03/2017

14

Q-Learning with SMDPs

* Can we also modify sampling based algorithms accordingly?

* Consider the standard Q-learning algorithm, rewritten slightly
in the following form,

Qri1(s,a) = (1 — ap)Qr(s,a) + aglr + Y max Qr(s',a")]

* |f we write down the reward sum, in brackets, for the entire
waiting time duration, then we will have

Qr+1(s,a) = (1 — ap)Qr(s,a) + agrip1 +yrige + ...

Y T e 7 Inax Qr(s',a’)]

03/03/2017 15

Case Study: Elevator Dispatching

[Crites and Barto, 1996]

hall
- - o buttons
° ® O ° DO mumm
5 '
e O O O 53
: : : : DO ,
rdropofI | pickup
equest 0 o o Us request
i | "/ (down)
//O, ° O O DO m
| I
O O Q
elevator - o 0 ° O B3 age of
going up | I request
-) - U. q
O O O ~ DO
| [ﬁ |
) o)
O O O o B()
| I
O O O
O O ® O B O
| |
O m
O > O ® [T] BO
| |
@) O] O u® 1

03/03/2017 16

Semi-Markov Q-Learning

Continuous-time problem but decisions in discrete jumps.
For this SMDP, the expression for returns can be written as,

_ k _ - Pt
Rt - E)/ rt+k+1 Or Rt _ fe rt+r dT
k=0 0

Note that the meaning of quantity r differs in the two expressions:
- reward at a discrete time step in discrete case
- reward “rate” in continuous case

The negative exponential has a similar role as the discount
factor as we have been using it so far.

03/03/2017 17

Semi-Markov Q-Learning

Suppose system takes action a from state s at time ¢,,

and next decision is needed at time ¢, in state s:

O(s.a) < (1-a)O(s, a)+af PNy dr e 1)maxQ(s a)

03/03/2017 18

O Your Car
Other Cars

Option Hierarchies

| o | g | g | g

| g | g
< 5|

| g | g | g

03/03/2017

Options Framework

30

Options example:
Move until end of hallway

end of hallway.

Options can take variable number of steps

[Reference: R.S. Sutton, D. Precup, S. Singh, Between MDPs and Semi-MDPs: A framework for temporal
Abstraction in reinforcement learning, Artificial Intelligence Journal 112:181-211, 1999.

03/03/2017 31

Options [Sutton, Precup, Singh '99]

* An option is a behaviour defined in terms of:
o={l,m,PB,}

|, : Set of states in which o can be initiated.

m.(s) : Policy (mapping S to A)® when o is executing.

B,(s) : Probability that o terminates in s.

3Can be a policy
over lower level
options.

03/03/2017

32

03/03/2017

Rooms Example

Goal states are given
a terminal value of 1

4 rooms

4 hallways

4 unreliable
primitive actions

up

| : Fail 33%
left fght fihe time

down

8 multi-step options
(to each room's 2 hallways)

Given goal location,
quickly plan shortest route

All rewards zero
Y=.9

33

Options Define a Semi-MDP

Time =—

VIDP Discrete time
State. Homogeneous discount
Continuous time

SMDP 0/\/\(Discrete events
Interval-dependent discount
Options a/\ /\ B Discrete time
over MDP m Overlaid discrete events

Interval-dependent discount

A discrete-time SMDP overlaid on an MDP
Can be analyzed at either level

03/03/2017 34

MDP + Options = SMDP

Theorem:

For any MDP,

and any set of options,
the decision process that chooses among the options,

executing each to termination,
is an SMDP.

Thus all Bellman equations and DP results extend for

value functions over options and models of options
(cf. SMDP theory).

03/03/2017 35

Why is this Useful?

* We can now define policy over options as well:
w:Sx0—|0,1]

* And redefine all value functions appropriately:

VE(s), Q" (s,0), V5 (s), Qo (s,0)

* All policy learning methods discussed so far, e.g., Value and
Policy Iteration, can be defined over S and O

* Coherent theory of learning and planning, with courses of
action at variable time scales, yet at the same level

03/03/2017 36

Value Functions Over Options

We can write the expression for optimal value as,

V(o) =, e, VO

Vo (s) = grel%x E{riig + ...+ ’yk_lrt+k + ’kaé’j(sHk)\S(o, s,t)}

Vé(s) = max Elr + 4 V3 ()€ (o, 5)

k being the duration of o when taken in s; conditioning is over the event
that the option is initiated at that state and time.

03/03/2017 37

Motivations for Options Framework

 Add temporally extended activities to choices available to RL
agent, without precluding planning and learning at finer
grained MDP level

* Optimal policies over primitives are not compromised due to
addition of options

 However, if an option is useful, learning will quickly find this
out — prevent prolonged and useless ‘flailing about’

PS: If all options are 1-step, you recover the core MDP

03/03/2017

38

03/03/2017

Rooms Example —
Policy within One Room

100

90

80- R

70F

60

50

Colour = option specific value

39

Time Course of Use of Action/Option

[Source: M. Botvinick, Hierarchical models of behavior and prefrontal function, Trends in Cognitive Science 12(5), 2008]

03/03/2017 40

Performance Improvement with Options

600 -
500 -
400 -
Q
© 300
n
200 -
With options
100 - / ___ Primitive actions only
0 —— e
20 40 60 80 100 120 140 160 180 200

Episode

[Source: M. Botvinick, Hierarchical models of behavior and prefrontal function, Trends in Cognitive Science 12(5), 2008]
41

03/03/2017

Summary

 Semi-MDPs for decisions at some points in time (with, discrete

or continuous, time intervals)

— All techniques learnt (DP, MC, TD) applicable with slight

modifications to Bellman and Backup.

e Options for a hierarchical representation of available activities

— Can use Semi-MDP theory to solve problems.

11

* Case study, Sec 11.4 (Elevator Dispatching) in print version of
S+B book

 Up to and including Sec 4.1 from A.G. Barto, S. Mahadevan,
Recent Advances in Hierarchical Reinforcement Learning
http://www.springerlink.com/content/tl1n705w7g452066/

Optional:

 R.S. Sutton, D. Precup, S. Singh, Between MDPs and semi-
MDPs: A framework for temporal abstraction in reinforcement
learning, http://dx.doi.org/10.1016/S0004-3702(99)00052-1

12

Appendix

Elevator Dispatch

Problem Setup:
Passenger Arrival Patterns

Up-peak and Down-peak traffic

* Not equivalent: down-peak handling capacity is much greater than up-
peak handling capacity; so up-peak capacity is limiting factor.

« Up-peak easiest to analyse: once everyone is onboard at lobby, rest
of trip is determined. The only decision is when to open and close
doors at lobby. Optimal policy for pure case is: close doors when
threshold number on; threshold depends on traffic intensity.

« More policies to consider for two-way and down-peak traffic.

« We focus on down-peak traffic pattern.

03/03/2017 19

Various Extant Control Strategies

- Zoning: divide building into zones; park in zone when idle. Robust in
heavy traffic.

Search-based methods: greedy or non-greedy. Receding Horizon
control.

Rule-based methods: expert systems/fuzzy logic; from human
“experts”

Other heuristic methods: Longest Queue First (LQF), Highest
Unanswered Floor First (HUFF), Dynamic Load Balancing (DLB)

- Adaptive/Learning methods: NNs for prediction, parameter space
search using simulation, DP on simplified model, non-sequential RL

The Elevator Model
(Lewis, 1991)

Discrete Event System: continuous time,
asynchronous elevator operation

Parameters:
* Floor Time (time to move one floor at max speed): 1.45 secs.

- Stop Time (time to decelerate, open and close doors, and accelerate
again): 7.19 secs.

- TurnTime (time needed by a stopped car to change directions): 1 sec.

- Load Time (the time for one passenger to enter or exit a car): a random
variable with range from 0.6 to 6.0 secs, mean of 1 sec.

- Car Capacity: 20 passengers

Traffic Profile:
- Poisson arrivals with rates changing every 5 minutes; down-peak

03/03/2017 21

State Space

- 18 hall call buttons: 2'8 combinations
- positions and directions of cars: 18% (rounding to nearest floor)

- motion states of cars (accelerating, moving, decelerating,
stopped, loading, turning): 6

40 car buttons: 249

- Set of passengers waiting at each floor, each passenger's arrival
time and destination: unobservable. However, 18 real numbers
are available giving elapsed time since hall buttons pushed; we
discretize these.

« Set of passengers riding each car and their destinations:
observable only through the car buttons

Conservatively about 1022 sates

Actions

- When moving (halfway between floors):
— stop at next floor
— continue past next floor
» When stopped at a floor:
—goup
— go down
- Asynchronous

\ 4
\4

\ 4
=

\4

\ 4

03/03/2017

\4

\ 4

23

Constraints

— « A car cannot pass a floor if a passenger wants to get off
there

* A car cannot change direction until it has serviced all
standard onboard passengers traveling in the current direction

- Don’t stop at a floor if another car is already stopping, or
Is stopped, there

: — <+ Don’t stop at a floor unless someone wants to get off
special there
heuristic

— + Given a choice, always move up

mmmmp> Stop and Continue

03/03/2017 24

Performance Criteria

Minimize:

- Average wait time
- Average system time (wait + travel time)
* % waiting > T seconds (e.g., T = 60)

- * Average squared wait time (to encourage fast and fair service)

03/03/2017

25

Average Squared Wait Time

Instantaneous cost, p individuals:

= (wait, (0))

p

Define return as an integral rather than a sum (Bradtke and Duff, 1994):

03/03/2017

26

Computing Rewards

Must calculate

o

fe'ﬁ(r‘ts)rr dt

0

- “Omniscient Rewards”: the simulator knows how long each
passenger has been waiting.

* “On-Line Rewards”: Assumes only arrival time of first passenger in
each queue is known (elapsed hall button time); estimate arrival
times

03/03/2017

27

Neural Networks

47 inputs, 20 sigmoid hidden units, 1 or 2 output units

Inputs:
« 9 binary: state of each hall down button
9 real: elapsed time of hall down button if pushed

- 16 binary: one on at a time: position and direction of car making
decision

10 real: location/direction of other cars: “footprint”
- 1 binary: at highest floor with waiting passenger?
1 binary: at floor with longest waiting passenger?
1 bias unit = 1

80

Average 60 ﬂ i
waiting
and 404
system
times 207
CTERESEZ Zao0
SQ%A%EEmmm
@) C/}
3 T =
v
Dispatcher

03/03/2017

Elevator Results

2 —
% Waiting

>1 minute
1_

SECTOR_]

|m — NS T —
LOLZE & pnad
AESEE 28R
55 &
T T m
Dispatcher

Average

squared

waiting
time

800
600
400
200 A |/H
EREE
8&%4%52
@) C/J
R T I
w
Dispatcher

29

RLl
RL2

	Slide 1
	Slide 2
	Slide 3
	Slide 5
	Slide 6
	Slide 8
	Slide 9
	Slide 11
	Slide 12
	Slide 13

