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Today's Content

* Temporal Difference Learning — Control

- Sarsa

- Q-Learning



TD for Control. Learning O-Values

Learn action values Q™ (s, a) for the policy 7
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SARSA update rule:
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TD for Control: Learning O-Values

e Choose a behaviour policy 7 and estimate the Q-values (Q™) using the SARSA
update rule. Change 7 towards greediness wrt Q™.

e Use e-greedy or e-soft policies.

e Converges with probability 1 to optimal policy and Q-values if visit all state-
action pairs infinitely many times and policy converges to greedy policy, e.g. by
arranging for ¢ to tend towards O.

Remember: learning optimal Q-values is useful since it tells us immediately
which is(are) the optimal action(s) — they have the highest Q-value
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Algorithm: SARSA

e |nitialise (s, a)

e Repeat many times
— Pick s, a
— Repeat each step to goal
« Do a, observe r, s
x Choose a’ based on Q(s',d’) e-greedy

x Q(s,a) =Q(s,a) +alr +vQ(s',d") — Q(s,a)]
x s=s5,a=ad
— Until s terminal (where Q(s’,a") = 0)
Use with policy iteration, i.e. change policy each time to be greedy wrt current
estimate of ()

Example: windy gridworld, S+B sect. 6.4
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Windy Gridworld
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Results of Sarsa on the Windy Gridworld
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(-Learning

SARSA is an example of on-policy learning. Why?

Q-LEARNING is an example of off-policy learning
Update rule:

AQi(si,ar) = alrie -|-£q, max Q(St41, aﬂ — Q(s¢, ar)]

Always update using maximum () value available from next state: then () = Qx,
optimal action-value function
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Algorithm: O-Learning

e |nitialise (s, a)

e Repeat many times
— Pick s start state
— Repeat each step to goal
x Choose a based on Q)(s,a) e-greedy

* Do a, observe r, s

x Q(s,a) = Q(s,a) + afr +ymax, Q(s',ad") — Q(s,a)]
* 5 =5
— Until s terminal

31/01/2017 Reinforcement Learning

26



Backup Diagrams: SARSA and Q-Learning
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SARSA backs up using the action @’ actually chosen by the behaviour policy.

Q-LEARNING backs up using the ()-value of the action a’* that is the best next
action, i.e. the one with the highest @) value, Q(s’,a’™). The action actually
chosen by the behaviour policy and followed is not necessarily a’*
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Cliffwalking
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(-Learning vs. SARSA

QL: Q(s,a) = Q(s,a) + afr + ymax, Q(s", a") — Q(s, a)] off-policy
SARSA: Q(s,a) = Q(s,a)+ a[r + vQ(s',a’") — Q(s, a)] on-policy
In the cliff-walking task:

QL: learns optimal policy along edge

SARSA: learns a safe non-optimal policy away from edge

e-greedy algorithm

For e #0 SARSA performs better online. Why?

For ¢ — 0 gradually, both converge to optimal.
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Summary

* |dea of Temporal Difference Prediction

e 1-step tabular model-free TD method

* Can extend to the GPI approach:
— On-policy: SARSA
— Off-policy: Q-learning

 TD methods bootstrap and sample, combining benefits of DP
and MC methods
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« Chapter 6 (6.4 to 6.5) of Sutton and Barto (1% Edition)
http://incompleteideas.net/book/ebook/the-book.html
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