Reinforcement Learning (INF11010)

Lecture 8: Off-Policy Monte Carlo /
TD Prediction

Pavlos Andreadis, February 13" 2018
with slides by Subramanian Ramamoorthy, 2017

where:
S is afinite set of states
A is afinite set of actions
P is a state transition probability function
R is areward function ,
-
. . A
”Y is a discount factor ""[gent)
state reward action
5. | Environment]*'l—

Methods Overview

* Dynamic Programming Methods:

— require a model
- bootstrap

e Monte Carlo Methods:

— do not require a model
— do not bootstrap

* Temporal-Difference Learning Methods:

— do not require a model
— bootstrap 3

Today's Content

* Off-Policy Monte Carlo

- Incremental Implementation

* Temporal Difference Learning — Prediction

- TD(0)

Off-policy Method

* Evaluate one policy while following another one
— Behaviour policy takes you around the environment
— Estimation policy is what you are after
* Of course, this requires: 7(s,a) >0 = 7/(s,a) > 0, ¥s,a
* Then, the off-policy procedure works as follows:
— Compute the weighted average of returns from behaviour
policy
— Weighting factors are the probability of the moves being in
estimation policy
— i.e., weight each return by relative probability of being
generated by wand &’

03/02/2017 Reinforcement Learning

Learning a Policy while Following Another

On the 7th first visit to state s, let:

pi(s) = probability of getting subsequent sequence of states and actions from 7’

(BEHAVIOUR) T'is the end-of-episode time

Using this to get data
ro1

Pi(sy) = H 7' (sg. ak)PSak"’SHl
k=t

R!(s) = return observed from following the behaviour policy through this sequence
of states and actions

03/02/2017 Reinforcement Learning 7

Learning a Policy while Following Another

Let pi(s) = probability of getting the same sequence of states and actions from
m (ESTIMATION)

Ti(s)—1
y — a
pi(s)) = [#(sw.an)Plk, .,
k=t

Then after n, returns experienced from state s (so episodes in which s occurs),
weight each return by relative probability of occurring in 7 and 7’ and average:

ns pi(s))

S, BERY(s)
ns p;i(s)
2it1 p;(s)

V™i(s) =

03/02/2017 Reinforcement Learning

Comparing the two Probabilities

T,;(S)—l
pi(sy) = W(.sk,ak)PS‘;’ng
k=t
Ti(s)—1
pz(st) — ”Tl(skt ak)Psa;'cksk_*_l
k=t
Ti(s)—1
pi(st) _ T (s ar)
Pi(s¢) P ' (Sk, ay)

So the weighting factors don’t depend on environment, only on the two policies.
How can we use this?

03/02/2017 Reinforcement Learning 9

Off-Policy MC Algorithm

How to use this formula to get (Q-values?

e Use Behaviour Policy 7' to generate moves
— must be soft so that all (s,a) continue to be explored

e Evaluate and improve Estimation Policy w
— converges to optimal policy

So...

1. BP «’ generates episode

2. EP 7 is deterministic and gives the greedy actions w.r.t. the current estimate
of Q™ (it is arbitrary for the first episode)

03/02/2017 Reinforcement Learning 10

Off-Policy MC Algorithm, cont.

3. Start at end of episode, work backwards

VY A Y
........ o e o o @

I S
-1 7= %17 5
till BP and EP give divergent actions, e.g. back to time ¢

4. For this chain of states and actions compute

Ti(s)—
])z H ‘5A aA
- '(Sk. ar)
7 is deterministic so (s, ar) etc. = 1 and we know 7’

03/02/2017 Reinforcement Learning

11

Off-Policy MC Algorithm, cont.

So
Ti(s)—l
pi(s¢) _ 1
Pi(sy) i 7' (S, ay)
5.
bR
Q(s,a) = L

Sum is over no. times this (s,a) has been visited, say N

R’ = return for the chain of states/actions (see 3) following (s, a) (it's different
for each of the N visits, as is p/p’)

03/02/2017 Reinforcement Learning 12

Off-Policy MC Algorithm, cont.

6. Do for each (s, a) in chain (see 3)

7. Improve 7 (estimation policy) to be greedy w.r.t. Q:
m(s) = arg max, Q(s,a)
(Still deterministic, so still 1 for transitions within it.)

8. Back to 1. Repeat until estimation policy and () values converge.

Takes a long time because we can only use the information from the end of the
episode in each iteration.

03/02/2017 Reinforcement Learning 13

The Off-Policy MC Control Algorithm

Initialize, for all s € S, a € A(s):
Q(s,a) « arbitrary
N(s,a) « 0 ; Numerator and
D(s,a) « 0 ; Denominator of Q(s,a)
m «— an arbitrary deterministic policy

Repeat forever:
(a) Select a policy 7’ and use it to generate an episode:
S0,Q0,71,81,Q1,72,...,87-1,07-1,TT, 8T
(b) 7 « latest time at which a, # 7(s;)
(c) For each pair s,a appearing in the episode after 7:

t «— the time of first occurrence (after 7) of s,a
1

T—-1
w — [lise1 7Gan
N(s,a) < N(s,a) + wR;
D(s,a) « D(s,a) +w
Q(s,a) — prm
(d) For each s € S:
7(s) « arg max, Q(s,a)

03/02/2017 Reinforcement Learning

14

Incremental Implementation

* Better to implement MC incrementally (think memory...)

 To compute the weighted average of each return:

- Wn+l []

2 ‘kak V"H = I/H + W Rn+l - Vn

V fo=1 o n+l

. S5 S —
" - \\ I/I/H+l = ”/” + w’n+]
w,
& Vy =W, =0

non-incremental . incremental equivalent

We may also wish to assign relative

Weights to different episodes...

03/02/2017 Reinforcement Learning

15

 Actions:
UP LEFT
UP

* Policy for Evaluation:
- Always UP

A

* Behavioural Policy:
- 7(s,a) =1/3

UP_RIGHT

Monte Carlo Summary

* Learn value functions and optimal policies for sample episodes

— directly from interaction with environment
- from simulator or sample model
— can focus on subset of states
- less harmed by violations of the Markov property
* Through the lens of Generalised Policy Iteration
- different policy evaluation procedure
* For sufficient exploration
- exploring starts (maybe in simulations; rarely in real life)
- on-policy (best policy that still explores)

- off-policy (decouples exploration from evaluated policy)

Learning in MDPs

* You are learning from a long

stream of experience:
SoaoprosS1a171...SQETEk...

state

action

... Up to some terminal state

state

* Direct methods:
action Approximate value function
(V/Q) straight away -
without computing P2, R%,

ss’

state

action

Should you wait until episodes end

or can you learn on-line?

state

31/01/2017 Reinforcement Learning 2

Recap: Incremental Monte Carlo Algorithm

* Incremental sample-average procedure:

V(s) & V() + = [R=V (o)

* Where n(s) is number of first visits to state s

— Note that we make one update, for each state, per episode

* One could pose this as a generic constant step-size algorithm:

Vi(s) < V(s)+alR—V(s)

— Useful in tracking non-stationary problems (task + environment)

31/01/2017 Reinforcement Learning 3

Example: Driving Home

State Elapsed Time Predicted Predicted
(minutes) Time to Go Total Time
leaving office 0 30 30
reach car, raining 5 (5) 35 40
exit highway 20 (15) 15 35
behind truck 30 (10) 10 40
home street 40 (10) 3 43

arrive home 43 (3) 0 43

Reinforcement Learning

Driving Home

Changes recommended by Monte

Carlo methods (a=1)

45 -
___Aactual outcome_____
) 40
Predicted
total
travel 35 -
time
30
T T T T T T
leaving reach exiting 2ndary home arrive
office car highway road street home
Situation
31/01/2017

Changes recommended
by TD methods (a=1)

actual
outcome
Predicted
total
travel
time

T T T T T T
leaving reach exiting 2ndary home arrive
office car highway road street home

Situation

Reinforcement Learning 5

What does DP Do?

V(s) < E {1, +7 V(s,)}

31/01/2017 Reinforcement Learning

What does Simple MC Do?

V(s,)< V(s) +a[R,-V(s,)]

where R is the actual return following state s, .

31/01/2017 Reinforcement Learning

ldea behind Temporal Difference Procedure

V(s,) < V(s,) +a|r, +yV(s,.)-V(s)]

31/01/2017 Reinforcement Learning

Temporal Difference Prediction

Policy Evaluation is often referred to as the Prediction Problem: we are trying to
predict how much return we'll get from being in state s and following policy 7 by
learning the state-value function V™. Compare:

Monte-Carlo update:
Visy) — Vi(sy) + a[Ry — V(sy)]

Target: actual return from s; to end of episode

~

@implest temporal difference update TD(0):

Vist) = Vist) + Qf[|'7’t+1 + "/"V('S‘t+1)| — V(st)]

| Target: estimate of the return)

.

Both have the same form

31/01/2017 Reinforcement Learning 9

Temporal Difference Learning

* Does not require a model (i.e., transition and reward prob.) —
learn directly from experience

* Update estimate of V/(s) soon after visiting the state s

AVi(st) = afre+1 + Vg1 (st+1) — Va(st)] oSy
L/,,’ ,,/// IIIII i . a
Viti(st) = Vilse) i "
K () St 1
., ' +
Actual 1-step reward V¥ v
Discounted estimate Initial estimate Backup diagram
1 of future reward , of future reward
I
This is better than ..eeeveveveeevvnnnn, this

31/01/2017 Reinforcement Learning 10

TD(0) Update

Vi(st) < V(st) + alrgr + vV (ser1) — V(se)]

cf Dynamic Programming update:

*'ﬂ(s) == /‘:n{l‘m 1 T+ ","'w(-“'t 1) ‘ ot = '“'}
= Y ow(s.a) Y Pl + V()]

a 5"

riv1 + vV (si41) is a better estimate of the value function than V'(s;) because it
replaces one step of estimated reward — that from ¢t to ¢ + 1 — with the actual
reward 7, obtained in that step.

31/01/2017 Reinforcement Learning 11

TD(0) Algorithm for Learning '™

e Initialise V'(s) arbitrarily; 7 is the policy to be evaluated; choose learning rate
« and discount factor ~

e Repeat for each episode
Pick a start state s
Repeat for each step in episode
Get action a given by policy 7 for state s
Take action a, observe reward r and next state s’
Vis) —V(s)+ alr+~V(s') —V(s)] —
s «— s

until s is terminal

From S+B Fig. 6.1

31/01/2017 Reinforcement Learning 12

Why TD Learning?

e Don't need a model of the environment

e On-line and incremental — updates each step — so can be fast
don't need to wait till the end of the episode so need less

memory, computation
subsequent updates take immediate advantage of updated values

cf. Monte Carlo — waits till end of episode, episodes may be long or tasks
continuing, some MC must ignore episodes with exploratory steps

e Updates are based on actual experience (r,4)
e Converges to V™(s) — but must decrease step size as learning continues

Why?

31/01/2017 Reinforcement Learning 13

Bootstrapping, Sampling

TD bootstraps: it updates its estimates of IV based on other estimates of V'
DP also bootstraps

MC does not bootstrap: estimates of complete returns are made at the end of
the episode

TD samples: its updates are based on one path through the state space
MC also samples

DP does not sample: its updates are based on all actions and all states that can
be reached from the updating state

Examples: see e.g. random walk example S+B sect. 6.2

31/01/2017 Reinforcement Learning 14

Random Walk Example

0 0 0 0 0 [
B——C0)—0)—(C)~—0)~—CE)—N0

start
0.8 -
100
0.6 10
Estimated (1) _——
value 0.4 -
true
values
Values learned by TD(0) after 0%~
various numbers of episodes
0 : . ' | |
A B C D E

31/01/2017 Reinforcement Learning 15

TD and MC on the Random Walk

0.25

0.2

RMS error, 0-157
averaged
over states 0-1-

0.05 -

Walks / Episodes

Data averaged over
100 sequences of episodes

31/01/2017 Reinforcement Learning 16

Understanding TD vs. MC

S+B Example 6.4:
* You observe 8 episodes of a process:

A,0,B,0 B,1 B,1 B,1 B,1 B,1 B,1 B,0
* [nterpretation:

— First episode starts in state A, transitions to B getting a reward of O,
and terminates with a reward of O

— Second episode starts in state B, terminates with a reward of 1, etc.

Question: What are good estimates for V(4) and V(B)?

31/01/2017 Reinforcement Learning

S+B Example 6.4: Underlying Markov Process

/ _\ r=0

A

./ 100%
V(A)=?

31/01/2017 Reinforcemen t Learning 18

TD and MC Estimated

e Batch Monte Carlo (update after all episodes done) gets V(A) = 0.
— This best matches the training data
— It minimises the mean-square error on the training set

* Consider sequentiality: A to B to terminating state; V(A) = 0.75.
— This is what TD(0) gets

— Expect that this will produce better estimate of future data even
though MC gives the best estimate on the present data

— Is correct for the maximum-likelihood estimate of the model of the
Markov process that generates the data, i.e. the best-fit Markov
model based on the observed transitions

— Assume this model is correct; estimate the value function — “certainty-
equivalence estimate”

TD(0) tends to converge faster because it moves towards a better estimate.

31/01/2017 Reinforcement Learning 19

* Chapter 5 (5.5 to end) and Chapter 6 (6.1 to 6.3) of Sutton and Barto
(1 Edition) http://incompleteideas.net/book/ebook/the-book.html

Optional (weighting the update for MC):

« Section 5.5 of Sutton and Barto (2" Edition)
http://incompleteideas.net/book/bookdraft2018jan1.pdf

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 7
	Slide 8

