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Example Application: Sampling
Spatiotemporal Fields

Satellite Sea Surface Temperature (SST),
Monterey Bay, CA, Aug 5-20, 2003
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Questions for Ocean Sampling

* How to represent the objective that the goal of motion
planning is to acquire information which is then used in
model learning?

* Concretely, how to decide where and when to sample on the
basis of this?
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Example Problem: Preference Elicitation

Luggage Capacity?
Shopping for a Car: Two Door? Cost?
Engine Size?
Color? Options?
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Preference Elicitation Problem

... the process of determining a user’s preferences/utilities to
the extent necessary to make a decision on her behalf

* |[ssues:
— preferences vary widely
— large (multi-attribute) outcome spaces
— quantitative utilities (the “numbers”) difficult to assess

* Preference elicitation can be posed as a POMDP

— Let us try to formulate the state-action-observation space...
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Plan for This Lecture

1. Alook (recap) at what Bayesian updating of model
parameters achieves

2. Information acquisition problems and the value of
information (Vol)

3. Policies based on information gain, e.g., for robots sampling
in @ navigation setting
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Bayesian Updating
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Recap of Background

Learning problem: probabilistic statement of what we believe
about parameters that characterise system behaviours

Focus is on uncertainty about performance:

— Choice: e.g., of person, technology

— Design: e.g., policies for running business operations

— Policy: e.g., when to sell an asset, maintenance decisions
Beliefs are influenced by observations we make

Two key ways of thinking about learning problems:
frequentist and Bayesian

Bayesian: start with initial beliefs regarding parameters and
combine prior with measurements to compute posteriors



Key Ideas in Bayesian Models

Begin with a prior distribution over unknown parameter u
Any number whose value is unknown is a random variable

Distribution of the random variable ~ our belief about how
likely u is to take on certain values

w~ N(6g, 08 ) Prior belief

Bayesian perspective is well suited to information collection
We always start with some sort of prior knowledge or history

More important is the conceptual framework that there exists
some truth that we are trying to discover

Optimal learning: learn u as efficiently as possible



Updates for Independent Beliefs

* Consider a random variable, e.g., observation W, normally

distributed. We can write its variance and precision as,
1

2 _
OWw s BW — 9
ow
* Having seen n observations, we believe mean of uis 6, and
variance is 1/,

* After observing the next measurement we update to,
0 L Bnen + 5WWn—|—1
n+1 —

Brn+1 = Bn + Bw
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Updates for Independent Beliefs

 We could combine these into the more compact form,

Hn—l—l — (Bn—l—l)_l(ﬂnen + 5WWn—|—1)

* Now, consider the variance of the form,
Vary|| = Var|- Wi, Wy, ..., W,]
62 =Vary[0pe1 — 0]

* This is the variance, given that we have collected n
measurements already, so the only random variable at this
pointis W . ,. Also, think of it as change in variance of 0,.
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Updates for Independent Beliefs

* We could also write @, ; in a different way by defining the
variable,

9n—|—1 Bl Hn
On
* Thisis a random variable only because we have not yet
observed WV . ;.

7

* So that we have the update,

Hn—l—l — Hn —|— 5'nZ
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What Happens to Variance
after a Measurement

E

Var(p) = E[p®] — (E[p))?

E(p?) — E[(E[p|W])?] + E[(E[p|W])?] = (E[u])?
E[E[W?|W] — (E[p|W])?] + E[(E[u|W])?] — (E[E[p/W]])?
B

Var(p|W)| + Var[E(u|W)]

E\WVar(pW)] = Var(u) — Var(Eu/W))

l.e., variance after measurement will, on average, always be smaller
than the original variance. The last term could be zero (if W is irrelevant),
but with a sensible signal this is the benefit to measurements.
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Information Acquisition

We want to understand the “economics of information”
Cost of information is highly problem dependent

Benefits of information can often be captured using models
that combine the issues of uncertainty in the context of
simple decision problems

We will look at a simple problem to illustrate key ideas
regarding these benefits



Example: Simple Game as a Decision Tree

* We need to decide whether
to first acquire a signal that - . by Game

signal outcome game outcome

provides information into
the probability of winning

* |llustrated in decision tree
e Game has two outcomes:

— If we win (“W”), we receive
reward R

— If we lose (“L”), we lose -1

— Lack of information is the
information state “N”
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Expected Value

* Without any information signal (“N”), probability of winning is
known to be p

 Expected value is,

EV|N| = max{0,pR — (1 — p)}

— where we assume we will not play if expected value is negative

____________________________________________________________________________________________________________________

Remark on notation:
Unlike in our previous discussions where V represented value as in
expectation of discounted return, here value will stand for a reward

____________________________________________________________________________________________________________________
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Informative Signal

* Before we play the game, we have the option of acquiring an
information signal S (e.g., purchasing a report or checking
information on the internet)

 The signal may be good (“g”) or bad (“b”)
* We assume that this signal will correctly predict the outcome
of this game with probability g, i.e.,

PIS=g|W|=P|S=0L=q

We would like to understand:
* the value of purchasing the signal (elementary information
acquisition problem) |
* the value of the quality of signal, represented by probability ¢

____________________________________________________________________________________________________________________
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Conditional Value

We first need to understand how the signal changes the
expected payoff from the game.

Conditional value of the game given the signal is,

E[V|S = g] = max{0, R.P[W|S = g] — P[L|S = ¢]}

This equation captures our ability to observe the signal, and
then decide whether we want to play the game or not.

If the signal is bad, expected winnings are,

E[V|S = b] = max{0, R.P[W|S = b — P|L|S = b]}



Decision to Acquire

* We next need to find the value of the game given that we
have decided to acquire the signal, but before we know its
realisation. This is given by,

E\V|S|=FE|V|S =g|P|S =g]+ E|V|S =b|P|S = b]

* For this, we need the unconditional probabilities:

P|S = g| = P|S = g|W|P|W|+ P[S = g|L|P|L]
PlS=g]=qp+(1—-q)(1—p)
P|S =b]| = P|S = b|W]P|W|+ P[S = b|L|P|L]

PlS=gl=01-qp+q(l—Dp)



Conditional Probability of Win/Loss
Given the Outcome of Signal

* Use Bayes theorem to write,

Pvls - g PIWIPLS = oW

P[S = ¢
pq
gp+ (1 —¢q)(1 —p)

PIW|S = g| =

e Correspondingly, for the bad signal,

P\W|P|S = b|W]|
P|S =)
p(l —q)

(1 —q)p+q(1—p)

PW|S = b] =

PIW|S = g =
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Value of the Signal

* Let Srepresent the decision to acquire the signal before we
know the outcome of the signal.

* Expected value of the game given that we have chosen to
acquire the signal is,
EV|S]=E|V|S=g|P|S=g]+ E|V|S =0bP[S = b
EV|S] = max{0, RP|W|S = g] — P|L[S = g]}(qp + (1 — ¢)(1 — p))+
max{0, RP[W|S = b| — P[L|S = b]}((1 — ¢)p + ¢(1 — p))

E[VS] = max{0, R s Hap+ (1 = q)(1 = p))+
max{0, R p(l —q) B q(1 —p) -

1-gp+q(l—p) (1—qgp+q(l-p)
(L=q)p+q(1—p))
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Value of the Signal

* The value of the signal which depends on the game reward R,
the probability of winning, p, and the quality of the signal, q,

Vi(R,p,q) = E[V|S| - E[V|N]
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Summary of the Simple Example

 We have computed the “value” of a discrete piece of
information in a stylized setting.

— Note that the use of value here, while consistent with our
earlier usage, is slightly simpler notationally: the return for a
single piece of information does not need a discounted sum

 Next, we turn to a variant where we are allowed to take
multiple measurements to increase the precision of the
information gained
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Towards Marginal Value of Information

* Imagine that we have a choice between doing nothing (with
reward 0) and choosing a random reward with mean wu.

* Assume that our prior belief about u is normally distributed
with mean and precision,
1
(00, B0 = —5)

9

* Before playing the game, we are allowed to collect a series of
measurements, W, Ws, ..., W, (we'll ignore cost for now)

* We assume that I has the unknown mean u and a known
precision Sw
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Estimating Reward after n Measurements

* If we choose to make n measurements, the precision of our
estimate of the reward would be,

Bn — 60 +n6W

 The updated estimate of our reward (using a Bayesian model)

would be, B
_ 60‘90 + nﬁWWn
Bo + nBw

W, = 13w,
nkzl

Or,
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Create a random variable capturing belief about reward
Use this to make a decision about whether to play the game
Start with a known identity,

Var(p) = E[Var(u|Wy, ... W) + Var[E[p|Wi, ..., W,]]

;n (Bo +nBw) ™"

[/J"Wla e Wn] — Hn

where, Var(u|/Wi,...,W,) =

We can write the change in variance (variance of 6, given

what we knew before we took the » measurements),
1

5%(n) = Var(0,) = Var(u) — E[—]

1 1 1 1

Bn
~2/ N\ _ e
o"(n) = Var(fn) = Bo  Bn 50 Bo + npbw




Value of Information

With Z denoting a standard zero mean —unit variance normal
distribution, we can write,

Hn — (9() -+ 52(n)Z

After our n measurements, we are going to choose to play the
game if we believe the value of the game is non-zero.

That value is V., = E[maX{O, (971}]

For each distribution family of interest, one could write down
such an expression and expand to get analytical formulation
of Vol



Value of information

Example Vol Curves

Value of information
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The slope of these curves provide a marginal Vol
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Exploration with a Mobile Robot
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Exploration Problems

Exploration: control a mobile robot so as to maximize
knowledge about the external world

Example: robot needs to acquire a map of a static

environment. If we represent map as “occupancy grid”,
exploration is to maximise cumulative information we have

about each grid cell

POMDPs already subsume this function but we need to define
an appropriate payoff function

One good choice is information gain:

Reduction in entropy of a robot’s belief as a function of its
actions



Exploration Heuristics

While POMDPs are conceptually useful here, we may not
want to use them directly — state/observation space is huge

We will instead try to derive greedy heuristic based on the
notion of information gain.

Limit lookahead to just one exploration action

— The exploration action could itself involve a sequence of

control actions (but logically, it will serve as one
exploration action)

— For instance, select a location to explore anywhere in the
map, then go there



Information and Entropy

The key to exploration is information.
Entropy of expected information:

Hp('x) — _/p(iC) lng(ZU)dZE or —Zp ) log p(x

Entropy is at its maximum for a uniform distrlbutlon,p
Conditional entropy is the entropy of a conditional distrib.

In exploration, we seek to minimize the expected entropy of
the belief after executing an action

So, condition on measurement z and control u that define the
belief state transition



Conditional Entropy after Action/Observation

* With B(b,z,u) denoting the belief after executing control # and
observing z under belief b,

* Conditional entropy of state x " after executing action u and
measuring z is given by,

Hy(2'|z,u) = —/B(b,z,u)(a:’) log B(b, z, u)(x")dx’

* The conditional entropy of the control is,

Hy(2'|u) = E;[Hy (2|2, u)]
//Hb Iz, w)p(z|z"p(z' |u, 2)b(x)dzdx’dx
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Greedy Techniques

* Expected information gain lets us phrase exploration as a
decision theoretic problem.

* |Information Gainis

Iy(u) = Hp(z) — Hp(2'|u)
= Hp(z) — E.[Hy(2'[2, )]
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Greedy Techniques

If 7(x,u) is the cost of applying control u in state x (treating
cost as negative numbers), then optimal greedy exploration
for the belief 5 maximizes difference between information

gain and cost,

w(b) = arg max a(Hy(x) — E,[Hy(z'|z,u)]) + /r(w, u)b(x)dx

Expected information gain c
(Original entropy — Cond. Entropy) xpected cost



Example: Combining Exploration and
Mapping

* By reasoning about control, the mapping process can be
made much more effective

 Question: Where to move next in a map?
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Exploration Problem: Visually

expected utility

high pose uncertainty
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Map Entropy

Low entropy

occupied free
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The overall entropy is the sum of the individual entropy values
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