Reinforcement Learning

On- and Off-Policy Learning

Subramanian Ramamoorthy
School of Informatics

3 February, 2017

Can We Avoid Thorny Assumptions?

 Two major MC assumptions (infinite sampling and exploring
all states) are unrealistic. How to circumvent the issue?

* Need to continually explore, €-soft policies:
— On-policy method: Explore in an e-greedy manner

— Off-policy method: Use a behaviour policy that is good at
exploring, then infer optimal policy from that

03/02/2017 Reinforcement Learning

On-Policy Monte Carlo Control

Overall idea is still that of Generalized Policy Iteration (move
towards greedy policy), but throw in continual exploration

In order to always explore, we want to keep policy e-soft:
m(s,a) > 0,7s,Va

Moreover, one may really wish to adopt an ¢-greedy policy:

€
m(s,a) = ——,if ais not the greedy choice

Al

: €
= 1 — e+ —,if ais the greedy choice

A

In this case, we have 7(s,a) > 7. 7s,Va

03/02/2017 Reinforcement Learning

On-Policy MC Control

Initialize, for all 5 € S, a € A(s):
Q(s,a) « arbitrary
Returns(s,a) « empty list
7« an arbitrary e-soft policy

Repeat forever:
(a) Generate an episode using
(b) For each pair s,u appearing in the episode:
R « return following the first occurrence of s,a @a[uate as Eefore
Append R to Returns(s,a)
Q(3s,a) + average(Returns(s,a))

{¢) For each s in the episode: ‘Jm}?rove towards
a* + arg max, Q(37 a) d‘ tﬁ
For all a € A(s): e-greedy, not tne max
. J 1-e+£/|A(s)| ifa=a
71'(3,(1) €/IA(S)| jfﬂ,#ﬂ*

03/02/2017 Reinforcement Learning 4

The Policy Improvement Step

* Any e-greedy policy w.r.t. 0" is an improvement over any ¢-
soft policy &t (Policy Improvement Theorem)

Q(s,m'(s,0) = Y 7(5,0)Q7(s,0)
/ "o

¢ - greedy policy A()] Z Q" (s,a) + (1 —¢) max Q" (s,a)

€ m(s,a) — =
A 2) @) g 4,)

This is bounded above by,

= T 290 Gy 2 0 + 2 (5,097)
= V™(s)

Y

03/02/2017 Reinforcement Learning 5

Off-policy Method

* Evaluate one policy while following another one
— Behaviour policy takes you around the environment
— Estimation policy is what you are after
* Of course, this requires: 7(s,a) >0 = 7/(s,a) > 0, ¥s,a
* Then, the off-policy procedure works as follows:
— Compute the weighted average of returns from behaviour
policy
— Weighting factors are the probability of the moves being in
estimation policy
— i.e., weight each return by relative probability of being
generated by wand &’

03/02/2017 Reinforcement Learning

Learning a Policy while Following Another

On the 7th first visit to state s, let:

pi(s) = probability of getting subsequent sequence of states and actions from 7’

(BEHAVIOUR) T'is the end-of-episode time

Using this to get data
ro1

Pi(sy) = H 7' (sg. ak)PSak"’SHl
k=t

R!(s) = return observed from following the behaviour policy through this sequence
of states and actions

03/02/2017 Reinforcement Learning 7

Learning a Policy while Following Another

Let pi(s) = probability of getting the same sequence of states and actions from
m (ESTIMATION)

Ti(s)—1
y — a
pi(s)) = [#(sw.an)Plk, .,
k=t

Then after n, returns experienced from state s (so episodes in which s occurs),
weight each return by relative probability of occurring in 7 and 7’ and average:

ns pi(s))

S, BERY(s)
ns p;i(s)
2it1 p;(s)

V™i(s) =

03/02/2017 Reinforcement Learning

Comparing the two Probabilities

T,;(S)—l
pi(sy) = W(.sk,ak)PS‘;’ng
k=t
Ti(s)—1
pz(st) — ”Tl(skt ak)Psa;'cksk_*_l
k=t
Ti(s)—1
pi(st) _ T (s ar)
Pi(s¢) P ' (Sk, ay)

So the weighting factors don’t depend on environment, only on the two policies.
How can we use this?

03/02/2017 Reinforcement Learning 9

Off-Policy MC Algorithm

How to use this formula to get (Q-values?

e Use Behaviour Policy 7' to generate moves
— must be soft so that all (s,a) continue to be explored

e Evaluate and improve Estimation Policy w
— converges to optimal policy

So...

1. BP «’ generates episode

2. EP 7 is deterministic and gives the greedy actions w.r.t. the current estimate
of Q™ (it is arbitrary for the first episode)

03/02/2017 Reinforcement Learning 10

Off-Policy MC Algorithm, cont.

3. Start at end of episode, work backwards

VY A Y
........ o e o o @

I S
-1 7= %17 5
till BP and EP give divergent actions, e.g. back to time ¢

4. For this chain of states and actions compute

Ti(s)—
])z H ‘5A aA
- '(Sk. ar)
7 is deterministic so (s, ar) etc. = 1 and we know 7’

03/02/2017 Reinforcement Learning

11

Off-Policy MC Algorithm, cont.

So
Ti(s)—l
pi(s¢) _ 1
Pi(sy) i 7' (S, ay)
5.
bR
Q(s,a) = L

Sum is over no. times this (s,a) has been visited, say N

R’ = return for the chain of states/actions (see 3) following (s, a) (it's different
for each of the N visits, as is p/p’)

03/02/2017 Reinforcement Learning 12

Off-Policy MC Algorithm, cont.

6. Do for each (s, a) in chain (see 3)

7. Improve 7 (estimation policy) to be greedy w.r.t. Q:
m(s) = arg max, Q(s,a)
(Still deterministic, so still 1 for transitions within it.)

8. Back to 1. Repeat until estimation policy and () values converge.

Takes a long time because we can only use the information from the end of the
episode in each iteration.

03/02/2017 Reinforcement Learning 13

The Off-Policy MC Control Algorithm

Initialize, for all s € S, a € A(s):
Q(s,a) « arbitrary
N(s,a) « 0 ; Numerator and
D(s,a) « 0 ; Denominator of Q(s,a)
m «— an arbitrary deterministic policy

Repeat forever:
(a) Select a policy 7’ and use it to generate an episode:
S0,Q0,71,81,Q1,72,...,87-1,07-1,TT, 8T
(b) 7 « latest time at which a, # 7(s;)
(c) For each pair s,a appearing in the episode after 7:

t «— the time of first occurrence (after 7) of s,a
1

T—-1
w — [lise1 7Gan
N(s,a) < N(s,a) + wR;
D(s,a) « D(s,a) +w
Q(s,a) — prm
(d) For each s € S:
7(s) « arg max, Q(s,a)

03/02/2017 Reinforcement Learning

14

Incremental Implementation

* Better to implement MC incrementally (think memory...)

 To compute the weighted average of each return:

- Wn+l []

2 ‘kak V"H = I/H + W Rn+l - Vn

V fo=1 o n+l

. S5 S —
" - \\ I/I/H+l = ”/” + w’n+]
w,
& Vy =W, =0

non-incremental . incremental equivalent

We may also wish to assign relative

Weights to different episodes...

03/02/2017 Reinforcement Learning

15

Racetrack Example

* Go as fast as possible but do
not skid off the track

e Velocity = #grid cells (h/v)
per time step, bounded

e Noise added to actions

« State/action space?
* Reward
* Episode?

* On-policy/off-policy
learning?

03/02/2017 Reinforcement Learning 16

Racetrack Example

Track Layout State Value Function

ii location

i location

2 4 -] g 10 12 14 16
ii location

03/02/2017 Reinforcement Learning 17

