Reinforcement Learning 15 March 2007
Lecture 20

COMBINING KOHONEN NETS AND
REINFORCEMENT LEARNING

eAnother method of generalisation
eGeneralising to continuous states and actions

eAndrew Smith’'s method



WHAT SHOULD A COMBINED METHOD BE
ABLE TO DO?

eGeneralise over large state spaces with a SOFM
eContinuously valued states

eExtend to generalising over action spaces
eContinuously valued actions

eAdaptable, not fixed, representation of action space

eReuse information on learned actions — actions must be tried out
to find their effect, so this information is expensive. Make the best
use of it.

eMultiple actions for each state — so can learn Q-values

eAndrew Smith: Dynamic generalisation of continuous action spaces

in reinforcement learning: a neurally inspired approach. PhD Thesis,
University of Edinburgh 2001.
http://www.era.lib.ed.ac.uk/items-by-author
7author=Smith’%2C+Andrew+James See also A.J.Smith: Applica-
tions of the self-organising map to reinforcement learning. Neural
Networks 15, 1107-1124, 2002.
http://www.psychology.mcmaster.ca/~smitha/PAGE PAPERS/
neural-networks-2002.pdf



TEST TASK

eSimple obstacle avoidance using a Khepera simulator (2D earlier
version of Webots).

eSee figures of robot and environment

o6 sensors: 0 — 1 (full off, i.e. no obstacle visible — full on, i.e.
obstacle immediately in front)

eState vector = 6D
2 motors: left, right: 0 — 1 (full off to full on).

eActions: either 2D < M, M > continuous actions, or 3 discrete
actions: left, forward, right

eDefault behaviour is move forward if each sensor <0.2. If obstacle,
do obstacle avoidance.



SIMPLE ARCHITECTURE

Output to motors left forward right

Q-learning”~

weight vector

6D T\

Input from sensors

elnput vector = 6D (one from each sensor), fully connected to each
node on grid

eMap/grid space = 5x5 Kohonen map. Each node has a 6D weight
vector. Each node connected to each action node

eActions: 3 fixed actions — turn right on spot, forward at full speed,

turn left on spot

el earn Q-values between each map node and each action



SMITH'S ALGORITHM

1. Present input x; to Kohonen map

2. Find winning unit i} = arg min; ||x; — w;|| — smallest Euclidean
distance

3. Take action a; — with best () if exploiting, random if exploring
— e-greedy, € decreases with time

4. Run robot on a;, get reward 7, new input vector X; 4

5. Get return of state-action pair h timesteps ago:
2 h
R=rip+yren a1+ Tn+...+9m

6. Update Q(i; ,,a;_1,) towards R, learning rate «

7. Update SOM using input vector randomly chosen from a short
term buffer. Update winner plus neighbours, learning rate and
neighbourhood size decay with time

8. Go to 1.

Reward r; = 1 if no sensor > 0.2 — no obstacle
Reward r; =-51-0.5x53-0.25x55-52-05x54-0.25x S6 -
otherwise



DETAILS OF ALGORITHM

Why the particular return?: it's a fixed horizon discounted sum —
effectively a truncated SARSA update.

We assume the effect of an action is limited to a fixed time window

h =4, v=0.95, a decays from 1 to 0

Why the short-term buffer for updating the input map? Kohonen
works better if successive inputs are not correlated. Best if they're
evenly distributed about the space. So use a 100-long buffer and
update with randomly chosen states from this buffer.

The algorithm learns only when the obstacle avoidance algorithm is
active — except can still learn with buffered stimuli and may still be
updating () values whose r's are still coming in

So we learn the Kohonen map and the () values at the same time.



RESULTS

See results diagrams/graphs

Sample paths show better obstacle avoidance behaviour after learn-

ing

Average reward against time increases
Compare with a handcrafted strategy:

turn right if S1 + 0.5 x S3 4+ 0.25 x S5 >
S2 + 0.5 x 54 + 0.25 x S6

turn left otherwise

Exploration parameter has most effect on performance:
the faster we exploit, the faster the performance increases at
the beginning
but slower exploitation leads to better long-term performance



WHAT THE GRID* MAP REPRESENTS

The bars in the diagram represent the 6D weight vectors

The circles represent the action with the highest Q-value: white =
left, black = right

el eft turns taken when right sensors activated
eRight turns taken when left sensors activated
eForward action not activated

eNeighbouring units respond to similar inputs

e Two actions meet at “ambiguous” categories, e.g. row three has
situations that only just need a left run

In weight space (6D so can only plot two dimensions at one time):
eBoth front sensors activated together — S1 and S2

eSide units activated singly — obstacles encountered one one side or
the other

eLower figures coloured according to output with highest Q-value:
above diagonal have more activity on left sensor than right (so ‘turn
right’ has highest Q-value)

* Smith refers to the ‘Input’ map rather than 'Grid’ map



EXTENSIONS

eCan also use the topology: in step 6, update all Q values towards
R, weighted by neighbourhood function

eCan also use a Kohonen map in the output, i.e. action, space.
Get the winning input unit, find the action unit with the highest
Q connected to it, carry out that action (modified with addition of
small random amount)

Action <M L, M R>= <wl + random, w2 + random>

Motors o o @  Output mapis 1D

20 units in all

® ® Input map
(only 1D shown)

Sensors ® ®

winner

If actual return > Q, train output unit to <M L M R>

Also update the Q

eCan also update all Qs towards the winner’'s R, weighted by neigh-
bourhood functions in input and output space:

Q = Q + aN(input) * N(output)|winner’s R — Q]



SEE ALSO

Philip Sterne: Reinforcement Sailing, MSc thesis 2005.
http://www.inf.ed.ac.uk/publications/thesis/online /IM040206.pdf

Applying reinforcement learning to a sailing controller, learning to
sail downwind and to tack. Used A. Smith’s double SOFMs as one
of the control architectures investigated.
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