Reinforcement Learning
Lecture 8

Gillian Hayes

1st February 2007

() School of _ e
informatics

Gillian Hayes RL Lecture 8 1st February 2007

° School of _e
s informatics

Monte Carlo Methods

e Learn value functions
e Discover optimal policies

e Don't require environmental knowledge: P, RS,
cf. Dynamic Programming

e Experience : sample sequences of states, actions, rewards s, a, 7

. real experience, simulated experience

e Attains optimal behaviour

Gillian Hayes RL Lecture 8 1st February 2007

School of

e .
- informatics

Algorithms for Solving RL: Monte Carlo Methods

e What are they?

Monte Carlo Policy Evaluation

First-visit policy evaluation

Estimating Q-values

On-policy methods

Off-policy methods

Gillian Hayes RL Lecture 8 1st February 2007

° School of _e
s informatics

How Does Monte Carlo Do This?

e Divide experience into episodes
— all episodes must terminate
e.g. noughts-and-crosses, card games

e Keep estimates of value functions, policies

e Change estimates/policies at end of each episode
= Keep track of s1,a1,71, 82,092,792, ...87_1,a17_1,TT—1, ST

sp = terminating state

e Incremental episode-by-episode
NOT step-by-step cf. DP

e Average complete returns — NOT partial returns

Gillian Hayes RL Lecture 8 1st February 2007

L] School of _ o
- informatics

Returns

e Return at time ¢: Ry =7i41 + 1442+ ... 77—1 + rp for each episode

rp is a terminating state
e Average the returns over many episodes starting from some state s.
This gives the value function V7(s) for that state for policy 7 since the state
value V™ (s) is the expected cumulative future discounted reward starting in s
and following policy 7.

Gillian Hayes RL Lecture 8 1st February 2007

° School of _e
= informatics

Backup Diagram for MC

I
State s — estimate V(s)
Policy T(s,a)
Action a
reward r(t+1)

State s’

One Episode — full episode needed before back-up.
(E cf DP which backs up after one move

Monte Carlo does not bootstrap but

Monte Carlo does sample

é Terminal state St

Gillian Hayes RL Lecture 8 1st February 2007

L] School of _ o
= informatics

Monte Carlo Learning of V"

MC methods estimate from experience: generate many “plays” from s, observe
total reward on each play, average over many plays

1. Initialise

e 7 = arbitrary policy to be evaluated
e V = arbitrary value function
e Returns(s) an empty list, one for each state s

2. Repeat till values converge

e Generate an episode using 7

e For each state appearing in the episode
— R = return following first occurrence of s
— Append R to Returns(s)
— V/(s) = average Returns(s)

Gillian Hayes RL Lecture 8 1st February 2007

° School of _e
= informatics

Blackjack

Sum on cards to be as close to 21 as possible

PLAYER DEALER
® 00
. oo e SO
[) o 00
10 | QUEEN ?
16
ACE=10R 11

Player:
e HIT = take another card

o STICK — Dealer’s turn
or GOES BUST > 21 — loses

Gillian Hayes RL Lecture 8 1st February 2007

L] School of _ o
= informatics

e Dealer’s fixed strategy
STICK if > 17
HIT if <17

QOutcome: if > 21 = LOSE
CLOSEST TO 21 = WIN
EQUALLY CLOSE = DRAW

Gillian Hayes RL Lecture 8 1st February 2007

° School of _e
= informatics

e Play many games
o Average returns (first-visit MC) following each state
e = True state-value functions

* Easier than DP = That needs P?,, R?,
* Easier to generate episodes than calculate probabilities

Gillian Hayes RL Lecture 8 1st February 2007

L] School of _ o
s informatics

Blackjack: MC Episodic Task

Reward +1, -1, O for win, lose, draw

*

Reward within game = 0

* No discount = Return = +1, -1, 0

*

Actions: HIT, STICK

States (sum on own cards, dealer’s face-up card, usable ace): 200
if sum on own cards < 11 no decision,

always HIT
* Example policy 7: If own sum < 20 HIT
Else STICK
Gillian Hayes RL Lecture 8 1st February 2007

° School of _e
= informatics

Policy Iteration (Reminder)

— Policy evaluation: Estimate V™ or Q7 for fixed policy 7

— Policy improvement: Get a policy better than m

Iterate until optimal policy/value function is reached
So we can do Monte Carlo as the Policy Evaluation step of Policy Iteration

because it computes the value function for a given policy. (There are other
algorithms we can use.)

Gillian Hayes RL Lecture 8 1st February 2007

L] School of _ o
- informatics

First-visit MC vs. Every-visit MC

In each episode observe return following first visit to state s

Number of first visits to s must — oo

Converges to V™ (s)

cf. Every-visit MC

Calculate V' as the average over return following every visit to state s in a set of
episodes

Gillian Hayes RL Lecture 8 1st February 2007

° School of _e
= informatics

Estimating Q-Values
Q7 (s,a) — similarly to V

Update by averaging returns following first visit to that state-action pair

Problem

If 7 deterministic, some/many (s, a) never visited
MUST EXPLORE!
So...

* Exploring starts: start every episode at a different (s, a) pair

* Or always use e-greedy or e-soft policies
— stochastic, where 7(s,a) >0

Gillian Hayes RL Lecture 8 1st February 2007

School of

e .
= informatics

Good Properties of MC

Estimates of V' for each state are independent
— no bootstrapping

Compute time to calculate changes (i.e. V of each state) is independent of
number of states

If values of only a few states needed, generate episodes from these states = can
ignore other states

Can learn from actual/simulated experience

Don’t need P¢,, R?

s/t ss!t

Gillian Hayes RL Lecture 8 1st February 2007

° School of _e
= informatics

Optimal Policies — Control Problem
Policy Iteration on @

0 1
o —pg Q" —pr m —prp QF —pr T2... opr T —pp QF
e Policy Improvement: Make 7 greedy w.r.t. current QQ

e Policy Evaluation: As before, with co episodes
Or episode-by-episode iteration. After an episode:

e policy evaluation (back-up)
e improve policy at states in episode

e eventually converges to optimal values and policy

Gillian Hayes RL Lecture 8 1st February 2007

L] School of _ o
— informatics

Can use exploring starts: MCES — Monte Carlo Exploring Starts to ensure
coverage of state/action space

Algorithm: see e.g. S+B Fig. 5.4

Gillian Hayes RL Lecture 8 1st February 2007

° School of _e
== informatics

On-Policy Control
Evaluate and improve the policy used to generate behaviour

Use a soft policy:
m(s,a) >0 Vs,Va GENERAL SOFT POLICY DEFINITION
m(s,a) = rap ifanot greedy eGREEDY

:1—e+@ if a greedy

m(s,a) > my Vs, Va e-SOFT

POLICY ITERATION

Evaluation: as before Improvement: move towards e-greedy policy (not greedy)
Avoids need for exploring starts

e-greedy is “closer” to greedy than other e-soft policies

Gillian Hayes RL Lecture 8 1st February 2007

L] School of _ e
—= informatics

Monte Carlo: Estimating Q" (s,a)

e If 7 deterministic, some (s, a) not visited = can’t improve their @) estimates

MUST MAINTAIN EXPLORATION!
e Use exploring starts — optimal policy

e Use an e-soft policy
ON-POLICY CONTROL — e-greedy policy
OFF-POLICY CONTROL — optimal policy

Gillian Hayes RL Lecture 8 1st February 2007

° School of _e
= Informatics

Off-Policy Control

e Behaviour policy 7’ generates moves

e But in off-policy control we learn an Estimation policy 7. How?
We need to:

e compute the weighted average of returns from behaviour policy
e the weighting factors are the probability of them being in estimation policy,

e i.e. weight each return by relative probability of being generated by 7w and =’

In detail...

Gillian Hayes RL Lecture 8 1st February 2007

L] School of _ o
= informatics

Can You Learn m While Following 7'?

We need: Estimation policy m(s,a) > 0 = Behaviour policy 7'(s,a) > 0
So if we want to estimate it, it MUST appear in behaviour policy
On the ith first visit to state s, let:

pi(s) = probability of getting subsequent sequence of states and actions from 7
(ESTIMATION)

pi(s) = probability of getting subsequent sequence of states and actions from 7’
(BEHAVIOUR)

Ti(s)—1
pi(st) = [w(swar)Plk,
k=t
Gillian Hayes RL Lecture 8 1st February 2007
] School of _e
s Informatics
Ti(s)—l
p;(St) = W’(Sk’ ak)Pb'akk;'k+1
k=t
T;(s)—1
pi(s)) _ 'y (ks ak)
Pi(st) vty ™ (sksar)

Doesn't depend on environment

Gillian Hayes RL Lecture 8 1st February 2007

L] School of _ e
= informatics

Wl(sk’ ak)nggkﬂ

Tl(s)fl
pi(st) =

k=t

R/(s) = return observed

Then after n, returns experienced from state s (so episodes in which s occurs):

s Pi(S)R/_(S)

i=1 pl(s)” %
VTi(s) = o
() Zns pi(s)
i=1p/(s)
Tl(s)fl
— a
pl(st) - H F(sk, ak)’PSkkiSk_'_l
k=t
Gillian Hayes RL Lecture 8 1st February 2007

° School of _e
=3 Informatics

Off-Policy MC Algorithm

How to use this formula to get ()-values?

e Use Behaviour Policy ' to generate moves
— must be soft so that all (s,a) continue to be explored

e Evaluate and improve Estimation Policy ®
— converges to optimal policy

So...

1. BP 7’ generates episode

2. EP 7 is deterministic and gives the greedy actions w.r.t. the current estimate

of Q7

Gillian Hayes RL Lecture 8 1st February 2007

L] School of _ o
= informatics

3. Start at end of episode, work backwards

till BP and EP give divergent actions, e.g. back to time ¢

4. For this chain of states and actions compute

i.e. we are able to find out about state s;

Gillian Hayes RL Lecture 8 1st February 2007

° School of _e
sz Informatics

R’ = return for the chain of states/actions (see 3) following (s, a) (it's different
for each of the NV visits)

6. Do for each (s,a) in chain (see 3)

7. Improve 7 (estimation policy) to be greedy w.r.t. Q:
m(s) = arg max, Q(s,a)

(Still deterministic)

Takes a long time because we can only use the information from the end of the
episode in each iteration.

Gillian Hayes RL Lecture 8 1st February 2007

L] School of _ e
== informatics

m is deterministic so 7(sg,ax) etc. =1

So
Tl(s)fl
pi(st) _ 1
. =
Pils)) o sk ak)
5.
SR
Q(S> a) - 1p_1
v
averaged over no. times this (s, a) has been visited, say N
Gillian Hayes RL Lecture 8 1st February 2007

° School of _e
= informatics

Summing Up
e MC methods learn V' and @ from experience — sample episodes.
e Don't need to know dynamics of environment.
e Can learn from simulated experience.
e Can focus them on those parts of the state space we're interested in.

e May be less harmed by violations of Markov property, because they don't
bootstrap.

e Need to maintain sufficient exploration — exploring starts or on-policy or
off-policy methods.

Gillian Hayes RL Lecture 8 1st February 2007

