Reinforcement Learning
Lecture 10

Gillian Hayes

8th February 2007

() School of _ e
informatics

Gillian Hayes RL Lecture 10 8th February 2007

° School of _e
s informatics

Incremental Monte Carlo Algorithm
Our first-visit MC algorithm had the steps:

R is the return following our first visit to s
Append R to Returns(s)
V (s) = average(Returns(s))

We can implement this incrementally:

V(s) = V(s) + nimR - V(s)]

n(s)

where n(s) is the number of first visits to s

Gillian Hayes RL Lecture 10 8th February 2007

L) School of _ e
- informatics

Algorithms for Solving RL: Temporal Difference
Learning (TD)

e Incremental Monte Carlo Algorithm

e TD Prediction

e TD vs MC vs DP

e TD for control: SARSA and Q-learning

Gillian Hayes RL Lecture 10 8th February 2007
® f School of _e
Incremental Monte Carlo Algorithm 3 informatics

We can also formulate a constant-a Monte Carlo update:
Vi(s)=V(s)+a[R—-V(s)]

useful when tracking a non-stationary problem (why?).

Gillian Hayes RL Lecture 10 8th February 2007

L] School of _ o
- informatics

Model-Based vs Model-Free Learning

e In RL we're generally trying to learn an optimal policy

e If a model is available, P¢,, R?, we can calculate optimal policy via dynamic
programming

e If no model, either:

learn model and then derive optimal policy
(model-based methods) or

learn optimal policy without learning model
(model-free methods)

e Temporal difference (TD) learning is a model-free, bootstrapping method based
on sampling the state-action space

Gillian Hayes RL Lecture 10 8th February 2007

° School of _e
= informatics

Temporal Difference Learning
e Doesn't need a model Psas,, R;‘S,

e Learns directly from experience

e Updates estimates of V(s) based on what happens after visiting state s

AV(s)=alr + YV (s V(s

/‘(t) g WG 7V (&
s Vi ©) "6
t

Step size

2 ss.g.pm’1 Initial estimate
"t of future reward
s Actual reward for Discounted estimate

1 one step of future reward ‘

Backup diagram
Better estimate than...............ccccccoceceinee this

Gillian Hayes RL Lecture 10 8th February 2007

School of

e .
= iInformatics

Temporal Difference Prediction

Policy Evaluation is often referred to as the Prediction Problem: we are trying to
predict how much return we'll get from being in state s and following policy 7 by
learning the state-value function V™.

Monte-Carlo update:
V(St) — V(St> + Oé[Rt — V(St>]

Target: actual return from s; to end of episode

Simplest temporal difference update TD(0):
V(st) = V(st) + afrepr + 7V (se1) — V(st)]
|

Target: estimate of the return

Both have the same form

Gillian Hayes RL Lecture 10 8th February 2007
° f School of _e
Temporal Difference Learning 7 in ormatics

TD(0) update:
V(st) = V(se) + afrigr + YV (se41) — V(se)]

cf Dynamic Programming update:

Vi(s) = Ex{ria+9V7(se41) [se = s}
= Z 7T(87 0’7) Z Psas’ [R;Ls/ + PYVW(SI)]

Gillian Hayes RL Lecture 10 8th February 2007

L] School of _ o
= informatics

Advantages of TD Learning Methods

e Don't need a model of the environment

e On-line and incremental so can be fast
don’t need to wait till the end of the episode so need less
memory, computation

e Updates are based on actual experience (r¢11)
e Converges to V7(s) — but must decrease step size « as learning continues
e Compare backup diagrams of TD, MC and DP

Gillian Hayes RL Lecture 10 8th February 2007

° School of _e
= informatics

Difference Between TD and MC Estimates
See S+B Example 6.4:

Suppose you observe the following 8 episodes:

A0 B0 B, 1
B, 1 B, 1
B, 1 B, 1
B, 1 B, 0

First episode starts in state A, transitions to B getting a reward of 0, and
terminates with a reward of 0. Second episode starts in state B and terminates
with a reward of 1, etc.

What are the best values for the estimates V(A) and V(B)?

Gillian Hayes RL Lecture 10 8th February 2007

L] School of _ o
s informatics

Bootstrapping, Sampling
TD bootstraps: it updates its estimates of V' based on other estimates of V
DP also bootstraps

MC does not bootstrap: estimates of complete returns are made at the end of
the episode

TD samples: its updates are based on one path through the state space
MC also samples

DP does not sample: its updates are based on all actions and all states that can
be reached from the updating state

Examples: see e.g. random walk example S+B sect. 6.2
MC vs TD updating: see e.g. S+B sect. 6.3

Gillian Hayes RL Lecture 10 8th February 2007

° School of _e
= informatics

Modelling the Underlying Markov Process

V(A) =7

Gillian Hayes RL Lecture 10 8th February 2007

L] School of _ o
- informatics

TD and MC Estimates

e Batch Monte Carlo (updating after all these episodes are done) gets V(A) =
0.

— This best matches the training data
— It minimises the mean-square error on the training set

o Consider sequentiality, i.e. A goes to B goes to terminating state; then V(A)
= 0.75.

— This is what TD(0) gets
— Expect that this will produce better estimate of future data even though
MC gives the best estimate on the present data

Gillian Hayes RL Lecture 10 8th February 2007

° School of _e
= informatics

TD for Control: Learning Q-Values

Learn action values Q™ (s, a) for the policy =

Q(St+1 2t+1)

I
t+1
7t
SARSA update rule:
AQq(st, ar) = afripr + vQu(St41, ary1) — Qi(st, ar)]

St+2 A2

St+1.8t+1

Gillian Hayes RL Lecture 10 8th February 2007

School of

e .
= informatics

— Is correct for the maximum-likelihood estimate of the model of the Markov
process that generates the data, i.e. the best-fit Markov model based on
the observed transitions

— Assume this model is correct; estimate the value function — “certainty-
equivalence estimate”

TD(0) tends to converge faster because it's moving towards a "better” estimate.

Gillian Hayes RL Lecture 10 8th February 2007
° f School of _e
TD for Control: Learning Q-Values 15 intormatics

e Choose a behaviour policy 7 and estimate the Q-values (Q™) using the SARSA
update rule. Change m towards greediness wrt Q™.

e Use e-greedy or e-soft policies.

e Converges with probability 1 to optimal policy and Q-values if visit all state-
action pairs infinitely many times and policy converges to greedy policy, e.g. by
arranging for € to tend towards 0.

Remember: learning optimal Q-values is useful since it tells us immediately
which is(are) the optimal action(s) — have the highest Q-value

Gillian Hayes RL Lecture 10 8th February 2007

L] School of _ o
— informatics

SARSA Algorithm

e Initialise Q(s,a)

e Repeat many times
— Pick s, a
— Repeat each step to goal
x Do a, observe r, s’
* Choose o’ based on Q(s',a’) e-greedy

Q(s,a) = Q(s,a) + alr +vQ(s',d") — Q(s,a)]
x s=5,a=a
— Until s terminal (where Q(s’,a’) = 0)
Use with policy iteration, i.e. change policy each time to be greedy wrt current
estimate of ()
Example: windy gridworld, S+B sect. 6.4

*

Gillian Hayes RL Lecture 10 8th February 2007

° School of _e
== informatics

Q-Learning Algorithm

e Initialise Q(s,a)

e Repeat many times
— Pick s start state
— Repeat each step to goal
* Choose a based on Q(s,a) e-greedy

* Do a, observe r, s’
x Q(s,a) = Q(s,a)+ a[r + ymax, Q(s',a’) — Q(s,a)]
x s=3s

— Until s terminal

Gillian Hayes RL Lecture 10 8th February 2007

School of

° °
= informatics
Q-Learning

SARSA is an example of on-policy learning. Why?

Q-LEARNING is an example of off-policy learning
Update rule:
AQ¢(st,ar) = arypr + 7y max Qt(st41,a) — Qi(st, ar)]

Always update using maximum @ value available from next state: then Q = Qx,
optimal action-value function

Gillian Hayes RL Lecture 10 8th February 2007

° School of _e
= Informatics

Backup Diagrams for SARSA and Q-Learning

sa Qsa) sa Q(s.a)
r r
s SARSA s Q-LEARNING
MAX
2@ Q@) ’ & Q(s'a)
a a*

SARSA backs up using the action a’ actually chosen by the behaviour policy.

Q-LEARNING backs up using the Q-value of the action a’* that is the best next
action, i.e. the one with the highest @ value, Q(s’,a’*). The action actually
chosen by the behaviour policy and followed is not necessarily a’*

Example: The cliff S+B sect. 6.5

Gillian Hayes RL Lecture 10 8th February 2007

L] School of _ o
= informatics

Q-Learning vs SARSA
QL: Q(s,a) = Q(s,a) + afr + ymaxy Q(s',a') — Q(s, a)]

SARSA: Q(s,a) = Q(s,a) + afr + yQ(s',d") — Q(s,a)]

In the cliff-walking task:
QL: learns optimal policy along edge
SARSA: learns a safe non-optimal policy away from edge

e-greedy algorithm
For € # 0 SARSA performs better online. Why?

For ¢ — 0 gradually, both converge to optimal.

off-policy

on-policy

Gillian Hayes RL Lecture 10

8th February 2007

