
Reinforcement Learning: Coursework 1

Pavlos Andreadis

February 2018

Release date: Wednesday 7th February 2018
Due date: 16:00 Monday 5nd March 2018

Introduction

This coursework is concerned with learning an optimal policy for a specific
scenario on the ”Road Fighter” problem, as defined in https://github.com/

cortu01/rl_roadFighter. It builds on the material covered in the lectures
on Markov Decision Processes (MDPs) and Dynamic Programming solutions to
MDPs. The aim of the coursework is to better familiarise you with representa-
tions of finite MDPs, as well as with how Policy Iteration works.

Code & Report

The code for the exercises should be implemented in Matlab, and make use of
the code available in the course repository: https://github.com/cortu01/rl_
roadFighter. Specifically, the exercises ask you to use certain scripts that will
define the MDP problem, and any starting policy, that needs to be used. The
repository contains brief instructions on getting started with the code.

The submission does not require a printed document. However, add answers
to questions in the exercises to a file named report.txt. Where an imple-
mentation does not work correctly, comments on the code will be taken into
account positively. Submit any Matlab files you have written for the exercises,
as well as a local version of the repository code, including any files you might
have modified. The solution for each exercise should be executable by running a
script with the name solution#.m,where # should be replaced by the exercise
number. (There is therefore no need to save and submit the results of running
the scripts).

Please make sure you have pulled the latest version of the code from the
repository.

1

https://github.com/cortu01/rl_roadFighter
https://github.com/cortu01/rl_roadFighter
https://github.com/cortu01/rl_roadFighter
https://github.com/cortu01/rl_roadFighter


Exercise 1: Implementing Policy Evaluation
‖50/100 marks‖
Implement the policy evaluation algorithm for the ”Road Fighter” problem. Use
it to evaluate the policy defined by variable pi_test1 as produced in the script
exercise1.m, for the specific scenario defined by the object MDP_1.
(Note: Objects created from the GridMap class now have the functions
getTransitions and getReward acting as the transition and reward functions
respectively. States are represented as [row,column] coordinates or as a state
number).

Exercise 2: Questions ‖50/100 marks‖
Part 1: Assume you have evaluated a policy, for example the policy evaluated
in Exercise 1. What procedure could you then run to produce a better policy?
Given your answer, can this new policy ever be stochastic?
Part 2: Assume that you are in the middle of running a policy iteration proce-
dure over the Exercise 1 scenario, and that you are about to start a new policy
evaluation step. If we were suddenly informed that we would have to use a new
reward function from this point forward, would the policy iteration procedure
ever converge to an optimal policy? Why?

Exercise 3 (bonus): Implementing Policy Itera-
tion ‖20/100 marks‖
Implement the policy iteration algorithm and use it to find an optimal policy
for the scenario in Exercise 1.

Mechanics

Marks: This assignment will be assessed out of 100 marks and forms 10% of
your final grade for the course. (Anything above 100 will be given a 100/100
score).
Academic conduct: Assessed work is subject to University regulations on
academic conduct:
http://web.inf.ed.ac.uk/infweb/admin/policies/academic-misconduct

Submission: You can submit more than once up until the submission dead-
line. All submissions are time-stamped automatically. Identically named files
will overwrite earlier submitted versions, so we will mark the latest submission
that comes in before the deadline. If you submit anything before the deadline,
you may not resubmit afterward. (This policy allows us to begin marking sub-
missions immediately after the deadline, without having to worry that some
may need to be re-marked).

2

http://web.inf.ed.ac.uk/infweb/admin/policies/academic-misconduct


If you do not submit anything before the deadline, you may submit exactly
once after the deadline, and a late penalty will be applied to this submission
unless you have received an approved extension. Please be aware that late
submissions may receive lower priority for marking, and marks may not be
returned within the same time-frame as for on-time submissions.
Warning: Unfortunately the submit command will technically allow you to
submit late even if you submitted before the deadline (i.e. it does not enforce
the above policy). Don’t do this! We will mark the version that we retrieve just
after the deadline, and (even worse) you may still be penalized for submitting
late because the time-stamp will update.

For additional information about late penalties and extension requests, see
the School web page below. Do not email any course staff directly about exten-
sion requests; you must follow the instructions on the web page: http://web.

inf.ed.ac.uk/infweb/student-services/ito/admin/coursework-projects/

late-coursework-extension-requests

Late submission penalty: Following the University guidelines, late course-
work submitted without an authorised extension will be recorded as late and
the following penalties will apply: 5 percentage points will be deducted for every
calendar day or part thereof it is late, up to a maximum of 7 calendar days.
After this time a mark of zero will be recorded.

Submission

Your coursework submission should be done electronically using the submit
command available on DICE machines. Your submission should include

• the answers to any questions in the exercises in file report.txt;

• the script to run your solution for each exercise solution#.m,where #

should be replaced by the exercise number;

• any other Matlab files you wrote for your solution to the exercises;

• and a local version of the repository code including any changes you made
to the files.

You should copy all of the files to a single directory, coursework1,and then
submit this directory using

submit rl cw1 coursework1

The submit command will prompt you with the details of the submission in-
cluding the name of the files / directories you are submitting and the name of
the course and exercise you are submitting for and ask you to check if these
details are correct. You should check these carefully and reply y to submit if
you are sure the files are correct and n otherwise. You can amend an existing
submission by rerunning the submit command any time up to the deadline. It
is therefore a good idea (particularly if this is your first time using the DICE

3

http://web.inf.ed.ac.uk/infweb/student-services/ito/admin/coursework-projects/late-coursework-extension-requests
http://web.inf.ed.ac.uk/infweb/student-services/ito/admin/coursework-projects/late-coursework-extension-requests
http://web.inf.ed.ac.uk/infweb/student-services/ito/admin/coursework-projects/late-coursework-extension-requests


submit mechanism) to do an initial run of the submit command early on and
then rerun the command if you make any further updates to your submission
rather than leaving submission to the last minute.

4


