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Instructions:

• This homework assignment is to be done individually, without help from
your classmates or others. Plaigarism will be dealt with strictly as per Uni-
versity policy.

• Solve all problems and provide your complete solutions (with adequate rea-
soning behind each step, and citations where needed) in a computer-printed
form.

• This assignment will be marked out of a 100 points, and will count for 10%
of your final course mark. It is due at 4 pm on 27 February 2017.

1 Multi-armed Bandits [30 points]

1. Show that in the case of two actions, the softmax operation using the Gibbs
distribution becomes the logistic, or sigmoid, function commonly used in
artificial neural networks. What effect does the temperature parameter have
on the function?

2. Consider the optimistic initial value example, (fig. 2.4 in Sutton and Barto’s
book - based on numbering in the first edition). This represents averages
over 2000 individual, randomly chosen 10-armed bandit tasks, so the result
should be reliable. How do you explain the oscillations and spikes in the
early part of the curve for the optimistic method? What makes this method
perform differently on particular early plays?
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Figure 1: Screenshot from the Enduro game.

2 Value Functions [20 points]

1. In the grid world example (figure 3.8 in Sutton and Barto’s book - based
on numbering in the first edition), the optimal value of the best state of the
gridworld is given up to one decimal place (as 24.4). Use your knowledge
of the optimal policy and the definition of the discounted return (equation
3.2, same version of the book) to express this value symbolically, and then
to compute it to three decimal places.

3 Q-Learning to play the Enduro game [50 points]

You are asked to design and implement a Q-learning based agent to play the game
of Enduro within the Arcade Learning Environment. Enduro is a racing game
based on participation in an endurance race and the objective is to pass a certain
number of cars by manoeuvring and avoiding collisions. You should implement a
learning agent based on the standard Q-learning algorithm, modelling the agent’s
environment (i.e., the road and other cars) as a grid world, a discrete state space
with a corresponding discrete action set.

3.1 Setup

For this question you will be using a Python package which you can find at www.
github.com/ipab-rad/rl-cw1. It should run out of the box on a DICE
machine, however, would you like to install it on your own computer, then follow
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the instructions in the repository README.md file. Download the package with:

$ git clone https://github.com/ipab-rad/rl-cw1.git

The package enables you to run the Enduro game and extract a discretised grid
from the game. In order to familiarise yourself with the game run the KeyboardAgent,
which will allow you to control the racing car from the keyboard using the ’WASD’
keys:

$ cd rl-cw1
$ python keyboard agent.py

On each key press the game will advance to the next state and you will also
see the updated environment grid. The total reward obtained by the agent in the
current episode is also printed in the terminal. You will notice that whenever you
take over a car there is a +1 reward and if you are taken over by an opponent then
you receive −1 reward.

If you explore the keyboard agent.py file you will see that that the pack-
age provides the base class Agent which you can derive from in order to create
agents that play the game. Make sure you read the entire README.md file and un-
derstand how the KeyboardAgent works before you proceed with the question.

3.2 Discretisation

The underlying dynamical system you are controlling is a continuous one, as men-
tioned above. Discuss the effect of your modelling assumptions on the design and
performance of your agent.

3.3 Random agent

Using the code skeleton in random agent.py implement an agent which fol-
lows a uniformly random policy. Run the agent for 100 episodes and plot the total
reward obtained for each episode, as well as the resulting distribution. Report the
mean and the variance of the total reward obtained per episode.

3.4 Q-learning Agent

Using the code skeleton in q agent.py implement an agent based on the Q-
learning algorithm. Compare the performance of the Q-learning agent to the base-
line random agent.
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3.5 Time horizon

Vary the look-ahead horizon, hence dimensionality of your state space, and present
a comparative analysis of the effect of this change by plotting and discussing the
differences between learning curves in these settings.

3.6 Additional features

If your model could include features beyond the immediate neighbourhood on the
road, what would be the effect on learning and task performance? Suggest at least
one such feature and write down the complete specification of the MDP based on
this design. Optionally, reimplement your learning algorithm to include this feature
and comment on the resulting performance based on learning curves.

4


	Multi-armed Bandits [30 points]
	Value Functions [20 points]
	Q-Learning to play the Enduro game [50 points]
	Setup
	Discretisation
	Random agent
	Q-learning Agent
	Time horizon
	Additional features


