
Randomness and Computation 2018/19
notes for Week 4 tutorial (Tues 5th, Wed 6th February, 2019)

1. (a), (b) Imagine taking our biased coin and flipping it twice. After doing this we have the
possibility of four outcomes: two “heads”, “heads”-then-“tails”, “tails”-then-“heads”,
two “tails”.

Now notice that because flips are independent and identical (with the unknown probabil-
ity p), that the probabilities of these four outcomes are p2, p(1−p), (1−p)p and (1−p)2

respectively. In particular, “heads”-then-“tails” and “tails”-then-“heads” have identical
probability of being generated. We will use this fact to identify “heads”-then-“tails”
with the overall outcome “heads” and “tails”-then-“heads” with the overall outcome
“tails”, these each having identical probability. If the pair of flips generates two “heads”
or two “tails”, we re-run the experiment with two new flips of the coin.

Algorithm BiasNoMore(p)

(a) flip1 =0 , flip2 =0;

(b) while flip1 = flip2 do

(c) flip1← B(1, p);

(d) flip2← B(1, p);

(e) od

(f) if flip1 = 1

(g) return “heads”

(h) else

(i) return “tails”

I’ve already argued that on any particular two flips, “heads” and “flips” are equally likely
to be returned (p(1−p) each). These is true regardless of whether we take 2, 4, 6, 8, . . . , 2i
flips to return a value - the final pair of flips determines what is returned, and “heads”
and “tails” are equally likely at that point. Hence the probability, over all possible
sequences of flips that end with a returned value, is equal for “heads” and “tails”.

(c) For this bit, we can write the expected number of coin flips used to be

2

∞∑
j=1

(1− 2p(1− p))j−12p(1− p).

The value inside the sum is the geometric distribution with parameter 2p(1 − p), and
therefore its expectation is the inverse of this parameter, which is 1

2p(1−p) .

Multiplying-in the 2 from outside the sum, overall the expected number of flips is 2
2p(1−p) ,

ie p−1(1− p)−1.
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2. We start with a bin containing one black ball and one white ball, and repeatedly do the
following: choose one ball from the bin uniformly at random, and then put the ball back in
the bin with another ball of the same colour. We repeat until there are n balls in the bin.

Claim: by the time that we have n balls (after n − 2 steps), the number of white balls is
equally likely to be any number between 1 and n− 1.

We will prove this by induction on n.

We should note that no matter what choices are made, we will always have at least one white
ball and at least one black ball in the bin.

base case: n = 2. In this case we definitely have 1 white ball in the bin. The range
1, . . . , n− 1 is just 1, so the hypothesis is trivially correct.

Induction step: Suppose we have shown the claim for n = k (Induction Hypothesis (IH)).
We now show it must also hold for n = k+ 1.

If the claim holds for n = k, then when it comes to carry out the following step, we know that
we have k balls in the bin, and that Prk balls[j white balls] = 1

k−1 for every j = 1 . . . , k − 1.
This is by our (IH).

Suppose the bin has j white balls before the final step (out of k total balls). If we draw a
black ball (with probability 1 − j

k), then there are still j white balls after this extra step. If

we draw a white ball (with probability j
k) there are instead j + 1 white balls after this final

step. So for every j = 2, . . . , k− 1 (so that both j− 1 and j are possible white ball counts for
the prior step with k balls)

Pr
k balls

[j white balls] = (1− j
k) Pr

k balls
[j white balls] + j−1

k Pr
k balls

[j− 1 white balls].

= (1− j
k)

1
k−1 +

j−1
k

1
k−1 by the (IH) for k− 1

=
1

k− 1
+

1

k(k− 1)
(j− 1− j)

=
1

k− 1
−

1

k(k− 1)

=
1

k− 1

k− 1

k

=
1

k
,

as required.

For the case of j = 1 for k + 1 balls, the only way we can achieve this is if we previously
had a single white ball in the (k balls) bin, and we drew a black ball on the final step; the
probability of this happening is

k− 1

k
Pr

k balls
[1 white ball],

which is k−1
k

1
k−1 = 1

k .
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For the case of j = k for k = 1 balls, a similar argument to the j = 1 case will work, or
alternatively we can just note that the remaining probability will be

1−

k−1∑
j=1

Pr
k+1 balls

[j white balls],

which is 1− (k− 1) 1k , which is 1
k .

3. (a) One run of the algorithm performs n− 2 edge contractions. Therefore, we have 2(n− 2)
edge contractions in two runs.

(b) We have n−k edge contractions in the first phase. Subsequently, in each of the l runs we
have k−2 edge contractions. Hence, we have a total of n−k+l(k−2) edge contractions.

(c) Let C be a minimum cutset of G. We will give a lower bound on the probability that our
modified Karger’s-min-cut algorithm returns C. Clearly, no edge in C can be contracted
in the first n − k edge contractions if the algorithm is to have any chance to output C

at the end. Therefore, we have that

Pr[no edge in C contracted in 2nd phase] ≥ (1−
2

n
)(1−

2

n− 1
) . . . (1−

2

n− (n− (k+ 1))
)

=
n− 2

n
· n− 3

n− 1
. . .

k− 1

k+ 1

=
k(k− 1)

n(n− 1)

Given that no edge in C is contracted in the first phase, the algorithm will output C if
at least one of the l runs in the second phase produces C. We have

Pr[2nd phase outputs C | no C edge contracted in 1st phase]

= 1− Pr[no run produces C | no C edge contracted in 1st phase]

≥ 1− (1− 2
k(k−1))

l

Therefore, putting it all together we have

Pr[algorithm outputs C] = Pr[2nd phase outputs C | no C edge contracted in 1st phase]

∗Pr[no C edge contracted in 1st phase]

≥

(
1−

(
1−

2

k(k− 1)

)l
)

k(k− 1)

n(n− 1)

(d) If we want to do the same number of edge contractions with our modified algorithm as
we would do with just two runs of original algorithm, then we must have

n− k+ l(k− 2) = 2(n− 2)
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Solving for l we get

l =
n+ k− 4

k− 2

We want to maximise(
1− (1−

2

k(k− 1)
)l
)

k(k− 1)

n(n− 1)
=

(
1− (1−

2

k(k− 1)
)
n+k−4
k−2

)
k(k− 1)

n(n− 1)

with respect to k such that 2 ≤ k ≤ n.

Then things become messy: we can do some transformations using 1− x ≤ e−x.

The idea is to use 1− x ≤ e−x where x = 1− 2
k(k−1) , and also probably use the fact that

k(k−1)
n(n−1) ≥

k2

n2 for k ≤ n, so that we have

[the probability expression to maximise] ≥ (1− e
−

2(n+k−4)
k(k−1)(k−2) ) · k

2

n2
.

And then maybe take derivatives, etc, to “finish off” (where the the finishing of is
probably a few pages.....) by maximising the new expression on the left hand side of the
last inequality. In any case, without doing all that, at this stage it already seems that:

1) k should not be a constant, because otherwise the factor k2/n2 already gives proba-
bability only O(1/n2), which is the same as the original Karger’s, and

2) we don’t want k >> n1/3, because then the factor (1 − e
−

2(n+k−4)
k(k−1)(k−2) ) would be going

to 0 fast enough to dwarf the ’gains’ in k2

n2 .

3) However, if we take k ∼ (2n)1/3, then the exponent in e
−

2(n+k−4)
k(k−1)(k−2) will become ap-

proximately −1, which will make (1− e
−

2(n+k−4)
k(k−1)(k−2) ) approximately 1− e−1, with the k2

n2

term becoming about 22/3

n4/3 , a considerable improvement over the standard “2 runs of
Karger” result.

4. Let Y be a nonnegative integer-valued random variable with (strictly) positive expectation.
Prove that

(E[Y])2

E[Y2]
≤ Pr[Y 6= 0] ≤ E[Y].

Proof: First let’s do the right-hand side. For this, notice that by Y’s range being non-
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negative and integer, we know

E[Y] =

∞∑
j=0

j · Pr[Y = j]

=

∞∑
j=1

j · Pr[Y = j]

≥ 1 ·
∞∑
j=1

Pr[Y = j],

= Pr[Y ≥ 1] = Pr[Y 6= 0],

where the first step (expansion of E[Y]) and final step (equality of Pr[Y ≥ 1] and Pr[Y 6= 0])
both follow from the fact that Y only takes on non-negative integers.

For the left-hand side, we have two ways of proving it:

method 1: Consider the conditional expectations E[Y | Y 6= 0] and E[Y2 | Y 6= 0]. Note that
the function f(x) = x2 is convex. Therefore, by Jensen’s inequality we know that

(E[Y | Y 6= 0])2 ≤ E[Y2 | Y 6= 0]

We have that

E[Y | Y 6= 0] =

∞∑
j=0

j · Pr[Y = j, Y 6= 0]

Pr[Y 6= 0]

=
1

Pr[Y 6= 0]

∞∑
j=0

j · Pr[Y = j, Y 6= 0]

=
1

Pr[Y 6= 0]

∞∑
j=1

j · Pr[Y = j]

=
1

Pr[Y 6= 0]
E[Y]

Similarly, we have

E[Y2 | Y 6= 0] =

∞∑
j=0

j2 · Pr[Y = j, Y 6= 0]

Pr[Y 6= 0]

=
1

Pr[Y 6= 0]

∞∑
j=0

j2 · Pr[Y = j, Y 6= 0]

=
1

Pr[Y 6= 0]

∞∑
j=1

j2 · Pr[Y = j]

=
1

Pr[Y 6= 0]
E[Y2]
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Therefore, we know that (
1

Pr[Y 6= 0]
E[Y]

)2

≤ 1

Pr[Y 6= 0]
E[Y2]

Multiplying both sides by (Pr[Y 6=0])2

E[Y2]
we get

(E[Y])2

E[Y2]
≤ Pr[Y 6= 0]

as claimed.

method 2: The alternative way of proving the left-hand side is to show it directly, by first
expanding out the terms Pr[Y 6= 0],E[Y2] and E[Y]2. We have

E[Y2] =

∞∑
j=1

j2 Pr[Y = j], and

E[Y]2 =

∞∑
i=1

∞∑
j=1

ijPr[Y = i]Pr[Y = j], and

Pr[Y 6= 0] =

∞∑
j=1

Pr[Y = j].

We will calculate E[Y2]Pr[Y 6= 0] as:( ∞∑
i=1

i2 Pr[Y = i]

)
·

 ∞∑
j=1

Pr[Y = j]


=

∞∑
i=1

∞∑
j=1

i2 · Pr[Y = i]Pr[Y = j]

Now, proving the left-hand side is equivalent to proving E[Y]2 ≤ E[Y2] · Pr[Y 6= 0], and (with
the expanded form) this happens if and only if we have

∞∑
i=1

∞∑
j=1

ijPr[Y = i]Pr[Y = j] ≤
∞∑
i=1

∞∑
j=1

i2 · Pr[Y = i]Pr[Y = j] (1)

Let’s pair up the terms as follows:

• First, for any h ∈ N, if we take h in both sums on the lhs of(1) (i ← h, j ← h) we get
h2 Pr[Y = h]Pr[Y = h]. Taking i ← h, j ← h on the rhs, we get h2 Pr[Y = h]Pr[Y = h]
also. So they match, and don’t affect the ≤.
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• Second, for any h, k with h 6= k, we will see 2hkPr[Y = h]Pr[Y = k] on the lhs of the
inequality (1) (because we may take i← h in the first sum and j← k in the second, but
may also take i← k, j← h).

On the rhs of (1), if we take i← h, j← k we get the value h2 Pr[Y = h]Pr[Y = k] and if
we take i← k, j← h we get the value k2 Pr[Y = h]Pr[Y = k].

Now, recall that for any positive values h, k, we always have

hk ≤ h2 + k2

2
,

hence 2hk ≤ h2+k2, and multiplying across by the non-negative value Pr[Y = h]Pr[Y =
k], we see

2hk · Pr[Y = h]Pr[Y = k] ≤ (h2 + k2) · Pr[Y = h]Pr[Y = k].

Therefore (1)’s lhs-value for h, k, h 6= k is always ≤ than (1)’s rhs-value for h, k, h 6= k.

Putting all these together for the various h, k pairs, we see that we must have

∞∑
i=1

∞∑
j=1

ijPr[Y = i]Pr[Y = j] ≤
∞∑
i=1

∞∑
j=1

i2 · Pr[Y = i]Pr[Y = j]

Mary Cryan
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