SAT-Variable Complexity of Hard Combinatorial Problems

Kazuo IWAMA and Shuichi MTYAZAKI

Department of Computer Science and Communication Engineering
Kyushu University, Hakozaki, Higashi-ku, Fukuoka 812, Japan
iwama@csce.kyushu-u.ac.jp

Abstract. This paper discusses polynomial-time reductions from Hamiltonian Circuit (HC),
k-Vertex Coloring (k-VC), and k-Clique Problems to Satisfiability Problem (SAT) which are
efficient in the number of Boolean variables needed in SAT. We first present a basic type of
reductions that need (n — 1)log(n — 1), (n — 1)logk, and klogn variables for HC, k-VC and
k-Clique, respectively. Several heuristics can reduce the number of variables. Some of them
achieve: (n— I —1)log(n — 1)+ Xlogd; for HC (I is the size of any independent set of vertices
v;’s whose degree is d;’s), and logn + (k — 1)log D for k-Clique (D is the kth largest degree of
the graph).

Recent revolutionary progress in SAT algorithms will make it increasingly reasonable to
solve (hard) combinatorial problems after reducing them to SAT. Efficiency in the above sense
apparently plays a key role in this approach. From a different viewpoint, the number of variables
can act as a complexity measure for the original problems, if the reduction is sufficiently efficient.
The merits of heuristics can also be evaluated by (the reduction of) this complexity.

Keyword Codes: F.2.2; G.2.1; G.2.2
Keywords: Nonnumerical Algorithms and Problems; Combinatorics; Graph Theory

1. Introduction

Finding of the usefulness of the local search method [KP92, SLM92, MI92] brought a
great impact to the world of SAT algorithms. Currently it is claimed that the local search
method can find a satisfying truth assignment of CNF equations with up to 10 variables under
certain conditions [SK93]. That means it will be increasingly reasonable to solve other (hard)
combinatorial problems by reducing (in polynomial time) them to SAT. For this strategy to
work, however, it is apparently significant that the reduction is efficient in the sense that the
size of instances does not increase much. For example, if one relied upon a careless reduction
that changes some graph of n vertices to a predicate of n? variables, then the merit (even if it is
vast) of SAT algorithms would be easily canceled. (Recall that many NP-completeness proofs
do use such “inefficient” reductions which increases the size of instances by square or even cube.)

However, many particular problems appear to have much more efficient reductions. For
example, the k-Vertex Color (k-VC) Problem can be reduced to SAT using (n —1)log k variables
or less (n is the number of vertices of the given graph, logn always mean [log, n] in this paper,
see Section 4). Suppose that SAT can be “solved” up to 10* variables. (There are already
preliminary experimental results in [SK93] and by ourselves that suggests the reality of this
estimation.) Then this reduction allows us to solve the k-VC problem with up to some 10°
vertices. This may be very surprising, since it is commonly understood [J93] that even 102
variables are very hard to cope with under the current technique for the k-VC problem. Thus
the efficient reduction can create the new possibility that the solvable size of hard combinatorial
problems increases significantly.

Another purpose of this paper is to claim that the number of SAT variables, if the reduction
is reasonably efficient, can be a measure of the complexity of the original problem. We shall call
this measure the SAT variable (SV) complexity.

(1) As will be mentioned in Sections 3 and 5, the Hamiltonian Circuit (HC) and the
k-Clique problems can also be reduced to SAT with (n — 1)log(n — 1) and klogn variables,
respectively. Including the case of HC too, those values well coincide with (the logarithm of)
their intuitive worst-case complexities, for there are (n — 1)! different vertex orders as possible
Hamiltonian Circuits and ,C}, vertex subsets for k-Clique.

(2) Note that there is no obvious way to reduce the SV complexity of HC from (n —
1)log(n—1) to even (n—1)log(n—1)—1. Thus the SV complexity is accurate and hence we can
expect that it is sensitive enough to measure the effect of usual heuristics that certainly work
practically but are not easy to be analyzed mathematically. For example, consider the following
(simple) heuristic for k-VC: Look at a vertex v and vy, vq,- - -, v adjacent to v. Then the number
of colors those vertices vy, vq,+++,v; can use is not k£ but at most £ — 1. It is far from easy to
analyze how much the original search space (k™) can be reduced by this heuristic. However, we
can show that the SV complexity decreases by this heuristic from (n—1)logk to (n—I—1)logk
if k& is a constant, where [is the size of any independent set that can be computed in polynomial
time. It is also shown that there do exist heuristics which can decrease the SV complexity of
HC by at least one.

There is a fairly large literature discussing (average in many cases) complexities of concrete
NP problems (see e.g., [MS92, DF89, BCLS87]), but have been relatively few papers [186,
DCGL92] that investigate the relation among problems, after the explosion of NP-completeness
papers. However, we believe that the reduction of one problem to another often gives us a new
insight on the original problem, which possibly contributes to developing fast algorithms. For
example, almost all existing graph-color algorithms essentially depend on Kucera’s method
[.86]. However, if it is converted to SAT and the local search is applied to the SAT, then the
overall algorithm, when considered in the original graph world, must be totally different from
Kucera’s method.

2. Preliminaries

In this paper, the following four problems are discussed. They are so-called decision
problems (the answer to each instance is Yes or No). Hamiltonian Circuit Problem (HC): For
a graph G = (V, F), HC asks if G has an ordering (vg, v1,---,v,_1) of the vertices of G, where
n = |V, such that (v,—1,v0) € F and (v;,v;41) € F for 0 <i < n — 1. k-Vertex Color Problem
(k-VC): For a graph G = (V,FE) and a positive integer k, it asks if there exists a coloring
function f: V — {0,1,---,k — 1} such that f(u) # f(v) whenever (u,v) € E. k-Clique: For a
graph G = (V,) and a positive integer k, it asks if G contain a clique of size k or more, that
is, a subset V/ C V such that |V’| > k and every two vertices in V' are joined by an edge in
E. Satisfiability (SAT): It asks whether there is a satisfying truth assignment for a given CNF
predicate F', i.e., a collection of clauses.

In this paper, a reduction M always means a many-one reduction to SAT from another
problem. M must run in deterministic polynomial time but what kind of polynomial (e.g., n?)
does not matter. Suppose that M reduces a problem P to SAT in such a way that any P’s
instance of size n can be translated into a CNF predicate of at most f(n) variables. (Again we
do not care the number of clauses, which must be polynomial since M runs in polynomial time.)
Then M is said to be f(n) SAT-variable (SV') bounded. We also say that the SV complezity
of the problem P is O(f(n)). O means an upperbound but, unlike the usual Big-O, we do not
neglect a constant factor or lower-order terms. For example, O(f(n)) # O(f(n) —1). Since the
SV complexity is only the complexity measure discussed in this paper, we often use simplified

description such as “an O(f(n)) reduction”.

3. Reductions from HC

3.1. Basic Reduction

We first present an 5((71 — 1)log(n — 1)) reduction. Let G = (V, E) be a graph of n
vertices vg,v1,-++,v,—1. For each vertex v; (i # 0), we prepare N = log(n — 1) variables
Ti0,Ti1, -+, 2; N—1. The total number of variables is (n — 1)log(n — 1). The basic idea of
constructing a CNF predicate F' (i.e., a set of clauses) is as follows: Suppose that the sequence

of vertices v, v;,, vi,, - s Viyytt Uiy g, V0 18 @ Hamiltonian Circuit of G. Then X;, =0,X,;, =

L, Xy, =j—1,---,X,,, = n—2is a satisfiable assignment of F’, where X; = j -1
means to assign the binary representation of value j — 1 to (9:2-] N—15Ti; N=2,7 " acij,o). Also, let
C((zsN=1,""",2:0) = [) denote the (single) clause that becomes 0 if (2; y_1,---,2;0) = [. For

example, C'((2;3,22,%;1,%:0) = 5) is (2,3 4+ Tiz + 21 + Tig)-

Reduction HC-I1.
Step1: Foreachi,1 < i< N—1, construct the clauses that become 0 (false) if (2; N_1,-++,2;0) >

n — 2 that means the truth assignment to (z; y_1, -+, 2;0), if it is viewed as a binary
number, is grater than n — 2. (The similar notations will also be used below.) For
example, when N = 3 and n —2 = 1010, (74, + T3,)(74; + i, + T4, + Tiy) are those clauses.

Step2: Foreachi,j, 1 <i< j < n-—1, construct the clauses that becomes 0if (z; n_1,--,2;0) =
(z;N=1,""*,2j0). A simple method is to prepare 2V clauses for each 7, j, namely, for each
1,0 <1< 2N 1, construct (single) clause C(ziN=1,""»zi0) =D+C((zj N1, 2j0) =
l

Step3:)For each 4,7, 1 <4 < j < n — 1, such that »; and v; are not adjacent, construct the

clauses that become 0 if (2; y_1,-+,250) = (2 N=1,+*,2j0) — L or (2; N_1, ", Zip) =
(z;N=1,-*,2;0) + 1. Use the same technique as Step2.
Step4: For each ¢ such that v; is not adjacent to vg, construct two clauses C'((z; n—1, -+, 2i0) =

n—2)and C((z; N-1,*,2i0) = 0).

Theorem 1. There is a reduction from HC whose SV complexity is O((n —1)log(n—1)).

3.2. O((n—=1I—1)log(n — 1)+ Xlogd;) Reduction

It should be noted that there are no obvious ways of decreasing the SV complexity of HC-I
by even one. (For example, suppose that one could always find in polynomial time a vertex v
such that if G has a Hamiltonian Circuit then it has a Hamiltonian Circuit in which v appears
in the first half. Then the number of necessary variables for this » would be N — 1 instead of
N. Unfortunately, no such properties are known for general graphs.)

In this section, we shall show more sophisticated reduction than HC-T which can save
one variable at worst and more on average. The basic idea is as follows: It is a well-known
fact (e.g., [B73]) that if every vertex of G has degree at least n/2 then G has a Hamiltonian
Circuit. This condition can obviously be checked in polynomial time. Hence we can assume
that G includes at least one vertex v of degree at most n/2 — 1. To this vertex v, we prepare
not N variables but logd, variables (d, is v’s degree, log(d,) < N — 1 since d, < n/2). Now
we consider that the value assigned to these variables (say, h, 0 < h < d, — 1) means that the
previous vertex of v in the Hamiltonian Circuit is the vertex which is connected to v by the hth
edge out of the d, one’s. (We must set up a fixed order among the d, vertices adjacent to v in
advance.) The SV complexity of the following HC-II is thus (n —2)log(n — 1) +1log D where D is
the minimum degree of . Prepared variables are the same as HC-I (i.e., ;0, -+, 2; N_1) except
for the minimum-degree vertex v for which yo,y1,-++,yn—1 (N’ = logd,) are prepared.

Reduction HC-II.

Step1: Similarly as HC-I, construct clauses to maintain fundamental restrictions for variables,
such as (i) (2 N=1, 5 Z50) < n—2,(ii) (ynr—1,**,¥Y0) < dy—1and (iii) (z; N=1,-*,Ti0) #
(‘TLN—lv" '7mj70) if i # j.

Step2: The same restriction as Stepl-(iii) for the designated vertex v, namely if v is at the pth
position in the Hamiltonian Circuit, then no other vertex can be at the same pth. For each
2,7,0 and p such that 0 <7 < n—2,v; is adjacent to v by the /th edge, and 0 < p < n —2,
construct single clause

C((-ri,N—lv te rri,O) = P) + C((yN’—l: e 73/0) = l) + C((mj,N—lv te 7'rj,0) =p—- 1)

Step3: The same as Step3 of HC-I. If v; and v; are not adjacent, (2; N_1, -+, 2;0) # (zjN-1,-"",
mj,o) + 1.

Step4: The same restriction as Step3 for the designated vertex v. For each ¢, j,[and p such that
v; and v are not adjacent, v; is adjacent to v by the /th edge, and 0 < p < n—2, construct

single clause
C(zi,N-1,--",2i0) = p) + C((ynr—1,- -, 90) = D) + C((zjN-1," ", Tj0) = p = 2)-
Step5: Handle the special case for Step3 and Step4, namely, when v; = vg. Omitted.

Although details are omitted, HC-II can be extended so as to work for the existence of
two or more designated vertices u; for which ¥;10gd;~1, ¥ logd;—2,"**, ¥i,0 are prepared (instead
of N variables) if any two of them are not adjacent. The following theorem thus follows:

Theorem 2. Suppose that {uy,uq,---,ur} is any independent set of vertices. Then there
is a reduction from HC whose SV complezity is O((n — I — 1)log(n — 1) 4+ Xlogd;), where d; is
the degree of vertex u;.

Remark 1. Suppose that the degree of G is small, say at most four in all vertices. Then
one might think that 2(n — 1) variables are enough since, from each vertex two variables are

enough to specify which edge out of at most four the Hamiltonian Circuit goes through. This is
actually not true: It appears to be impossible to write appropriate predicate of polynomial length

using this few variables. On the other hand, if one uses more (say, n?) variables then it becomes
easier to construct the predicates whose length is likely to decrease. However, as mentioned
earlier, increasing the number of variables is considered to be worse than anything.

4. Reductions from £-VC

4.1. Basic Reduction

The SV complexity of the following basic reduction is O((n — 1)logk). Similarly as
before, for each vertex v;(i # 0), we prepare N = logk variables z;0,2;1,-+,2; N—1. The total
number of variables is (n — 1)logk. Suppose the solution of k-VC is that v;(i # 0) is colored

by C;. (We fix the color of vy to be color 0.) Then we construct a CNF predicate F' so that
X1=C,X9=0Cq,---, X;=C;,---, X,,_1 = C,_q1 will be a satisfiable assignment of F.

Reduction £V C-I.
Step1: Foreach i, 0 <17 < n—1, construct the clauses that become 0if (2; N_1,- -, 2;0) > k—1.
Step2: For each 4,j such that »; and v; are adjacent, construct a clause that becomes 0 if
(ziN-1,""",%i0) = (¥jN-1,"**,2j0). Namely, for each 7, j and p such that »; and v; are
adjacent, and 0 < p < k — 1, construct a clause

C((mi,N—la Tty xi,O) = P) + C((mj,N—la tc axj,O) = p)

Step3: The special case for Step2, for v; = vg. For each ¢ such that v; is adjacent to vg, construct
a clause

C((ziN=1,--",2:0) = 0).

Theorem 3. There is a reduction from k-VC whose SV complexity is O~((n —1)logk).

4.2. O((n — I —1)logk) Reduction

Consider a vertex v (a designated vertex, whose degree is [) and ug, u1,---,u;—1 adjacent
to v. Then the number of colors ug,u1,---,u;_1 can use is at most k — 1, because once all the k
colors are used for ug,uy,---,u;_1, the vertex v is no longer colorable. Otherwise, i.e., if we can

guarantee that ug,u1,---,u—1 use at most k — 1 colors, then the vertex v can use (at least one)
remaining color. Thus we can save all the N variables that were prepared for v in kVC-I.

Reduction £V C-II.

Step1: Similarly as kVC-1, construct clauses which maintain the restriction (z; y-1,---,%ip0) <
k—1.

Step2: Similarly as step2 of kVC-1,if v; and v; are adjacent, (z; N_1, *+,2i0) # (ZjN=1,""*,2j0)-

Step3: For the designated vertex v (degree 1), let ug,---,u;_y are adjacent to v. If [< k, we do
not construct any clause. If [> k, for each combination of k vertices (wiy, wi,,- -+, %;,_,)

selected from (ug,---,u;_1), and any permutation og,0q,---,04_1 of 0,1,--- kK — 1, con-

struct a clause
C((Zig,N=1,"**,Tig0) = 00) + ++ + C((Tip_y N=1," ", Tip_1,0) = Ok—1)-

It should be noted that the number of clauses is polynomial if £ is a constant.
Step4: Handle the special case for Step2 and Step3, namely, for v; = vg. Omitted.

EVC-II can be extended for two or more designated vertices v, for which no variables are
prepared, if any two of them are not adjacent. So if we can find an independent set of size I in

polynomial time, the SV complexity can be reduced to 6((71 — I —1)logk).
Theorem 4. There is a reduction from k-VC (k is constant) whose SV complezity is

5((71 — I —1)logk), where I is the size of any independent set of the given graph obtained in
polynomial time.

Remark 2. Apply the well known algorithm to obtain a maximal independent set for this
purpose. Then for a random graph such that there exists an edge with probability p between every

two vertices, it turns out to be I ~ loécffpnn. Namely, if the graph is sparse, for example, if pv

(the average degree)~ logn, then the complezity becomes roughly a half.

4.3. O(2(n —1) —|S]) Reduction

In this section we introduce another heuristic for the case that k is constant. For simplicity,
we assume that & = 4, i.e., the graph should be colored with four different colors. (Extension
to the general k is not hard.) The basic idea is simple: Suppose that vy, v, and vs constitute
a subgraph of K. Then, if the colors of v; and vy are fixed to, say, color 0 and 1, then the
possible colors for v3 are not four but only two (colors 2 and 3). That means we need only one
variable, instead of two, for v3. (That variable=0 means the smaller-numbered color out of the

two remaining ones.) It should be noted that if v4 is also adjacent to vy and v, then we need
only one variable for this v4 also. We omit the polynomial-time reduction algorithm.

Theorem 5. There is a reduction from §-VC whose SV complexity is O(2(n — 1) — |S|)
where S is any set of vertices v such that v is adjacent to some vertices vy and vy in V — S and
(’Ul, 1]2) e F.

5. Reductions from k-Clique
5.1. Basic Reduction

The basic reduction needs klogn variables, which are divided into k sets of N = logn
variables, namely, 2;0,2;1, ,2;v-1(0 < ¢ < k —1). Then a CNF predicate F is natu-

rally constructed so that if vertex v;,, v, -+, v;,_, constitute a k-clique, then X¢ = 79, X1 =
i,y X; =1, -, Xp_1 = ig—y Will be a satisfying assignment of F.
Reduction kClique-I.
Step1: For eachi (0 < ¢ < k—1), construct the clauses that become 0if (z; y_1, -+, 2;0) > n—1
Step2: Foreachi,j, 0 < i< j <k—1, construct the clauses that become 0if (z; n_1,-++,2;0) =
(Zj,N—1, 5 250)
Step3: For each pair of vertices v;,v; such that v; and v; are not adjacent, and for each p,q, 0 <
p < ¢ < k—1, construct a single clause C((zp n_1,*,%p0) =1)+ C((TgN=1,"",2q0) =

)

Theorem 6. There is a reduction from k-Clique whose SV complezity is 5(k logn).

5.2. O(logn + (k —1)log D) Reduction

There exists a more efficient reduction (kClique-II): It is obvious that all the k£ — 1 vertices
in k-clique are adjacent to the remaining one which we call a center vertex. We prepare N
variables, 210,211, *+,21,nv—1 to hold the number of the center vertex, and log D (where D is
the degree of the center vertex) variables y;0,¥i,1," " ,¥ilog D1 to specify the other k—1 vertices
(1< i< k—1). The idea is that if some value, (say, j) is assigned to z1,§v-1,%1,N-2,""*,Z1,0,
and if some value (say, [,0 <1 < d(v;) — 1) is assigned t0 ¥; 1og D1, ¥ilog D—2," * * » ¥i,0, then we

consider that the vertex which is adjacent to the vertex v; by the [th edge out of the d(v;) ones
is a member of the k-clique. To save much, we wish the degree of the center vertex to be small.
The worst case is that the vertices of k largest degrees become a clique. Even so, we can select
the center vertex as the vertex of the smallest degree among them.

Theorem 7. There is a reduction from k-Clique whose SV complexity is 5(logn +
(k—1)log D), where D is the kth largest degree of the graph. (The polynomial-time reduction
algorithm is omitted.)

5.3. 6(§log T) Reduction

We can show another reduction (kClique-IIT). Again for simplicity, we explain the case
of k = 31 (I is a positive integer). We consider k-clique as the [collection of K3 (triangle)
subgraphs. We have to find all the possible different K3’s in the graph G, and give the number
to each K3 from 0 to 7'— 1. Now we will introduce two definitions. For two different K3’s, (say,
K1 and K2)if K1 and K2 contain no common vertex, we say these two K3’s are independent.
If each of the three vertices of K1 is adjacent to each of K2 (K1 and K2 are connected by
a complete bipartite subgraph), then we say these two K%s are adjacent. Instead of selecting
k vertices as k-clique, we will select [K3’s under the condition that any two pair of K3’s are
independent and adjacent. Since we need logT variables to hold each K3 which constitute a
k-clique, we need glog T variables. Thus the SV complexity of this heuristic is O(% log T'). The
polynomial-time reduction algorithm is omitted.

Theorem 8. There is a reduction from k-Clique whose SV complexity is 6(§log T),
where T is the number of different K3 in the graph.

Remark 3. If the average degree of G is D, then we can roughly consider that the
probability that an edge exists between two vertices is D/n. Then the probability that any three
vertices constitute K3 is (D/n)>. Since the number of possible K3’s in G is ,C3 = n®/6, the
expected number of K3’s is D3/6. Since T < D3/6, the complexity of Theorem 8 is at most
5(k log D), which does not differ too much from the complexity of Theorem 7.

Remark 4. If we consider each K3 as a vertex and put an edge between Ks3’s that are
independent and adjacent, then we equivalently obtain [-Clique of such as transformed graph.
The heuristic of Sec.5.2 can be applied to this [-Clique problem.

REFERENCES

[B73] C. Berge, “Graphs and hypergraphs,” North-Holland, 1973.

[BCLS87] T. N. Bui, S. Chaudhuri, F. T. Leighton, and M. Sisper, “Graph bisection algorithms
with good average case behavior,” Combinatorica 7 (2),pp. 171-191, 1987.

[DCGLI92] S. B-David, B. Chor, O. Goldreich, and M. Luby, “On the theory of average case
complexity,” Journal of Computer and System Sciences 44, pp. 193-219, 1992.

[DF89] M. E. Dyer and A. M. Fieze, “The solution of some random NP-hard problems in
polynomial expected time,” J. of Algorithms 10, pp. 451-489, 1989.

[J93] D. Johnson, “History of the challenge and introduction to Clique and Coloring,” DIMACS
Challenge II Workshop, Rutgers, 1993.

[KP92] E. Koutsoupias and C. Papadimitrious, “On the greedy algorithm for satisfiability,”
Information Processing Letters 43, pp. 53-55, 1992.

[L86] L. A. Levin, “Average case complete problems,” SIAM J. Comput. 15, pp. 285-286, 1986.

[MI92] S. Miyazaki and K. Iwama, “Local search algorithms for the CNF satisfiability problem,”
In Proc. Kyushu Joint Convention, EERSJ, 1992 (in Japanese).

[MS92] J. Makowsky and A. Sharell, “On average case complexity of SAT for symmetric dis-
tributions,” Technical Report 739, Israel Institute of Technology, Department of Computer
Science, Haifa, Israel, 1992.

[SK93] B. Selman and H. T. Kautz, “Local search strategies for satisfiability testing,” DIMACS
Challenge II Workshop, Rutgers, 1993.

[SLM92] B. Selman and H. Levesque and D. Mitchell, “A new method for solving hard satisfia-
bility problems,” In Proc. Tenth National Conference on Artificial Intelligence, pp. 440-446,
1992.

