To appear in the Proc. of AAAI-94, Seattle, July 1994.

ModGen: Theorem Proving by Model Generation*

Sun Kim Hantao Zhang
Department of Computer Science
The University of Iowa
Towa City, TA 52242, U.S.A
{sunkim,hzhang}@cs.uiowa.edu

Abstract

ModGen (Model Generation) is a complete theorem
prover for first order logic with finite Herbrand do-
mains. ModGen takes first order formulas as input,
and generates models of the input formulas. ModGen
consists of two major modules: a module for trans-
forming the input formulas into propositional clauses,
and a module to find models of the propositional
clauses. The first module can be used by other re-
searchers so that the SAT problems can be easily rep-
resented, stored and communicated. An important
issue in the design of ModGen is to ensure that trans-
formed propositional clauses are satisfiable iff the orig-
inal formulas are. The second module can be easily
replaced by any advanced SAT problem solver. Mod-
Gen is easy to use and very efficient. Many problems
which are hard for general resolution theorem provers
are found easy for ModGen.

Introduction

Many theorem proving problems are difficult for to-
day’s theorem provers not because these problems are
really hard but because the methods are not suitable to
these problems. For example, one of test problems in
Larry Wos’ thought-provoking book (Wos 1988) (Test
Problem 6) asks one to prove that any group of order 7
is commutative. Using OTTER (Mccune 1990), one of
the best resolution-based theorem provers, this prob-
lem cannot be solved in hours. However, if we code this
problem in the propositional logic, the problem can be
solved in a couple of seconds.

The test problem mentioned above involves func-
tions of finite domains. For this kind of problems,
the constraint solving methods are better tools. The
FINDER, program (Stanley 1992) developed by John
Slaney is a well-known program for model generation
based on a constraint solving method.

The goal of our project is to create a subroutine
of OTTER which has similar functionality as FINDER.
However, instead of using any constraint solving meth-
ods, we prefer to use a decision procedure for the sat-
isfiability (SAT) of propositional formulas:

*Partially supported by the National Science Founda-
tion under Grants CCR-9202838 and CCR-9357851.

e While the SAT problem is a special case of constraint
satisfaction problems, many constraint satisfaction
problems can be easily and efficiently converted into
an instance of the SAT problem. The SAT problem
is a core of a large family of computationally in-
tractable NP-complete problems and has been iden-
tified as central to a variety of areas in computing
theory and engineering.

e There has been great interet in designing efficient
algorithms to solve the SAT problem. Various satis-
fiability testing methods are available, such as back-
tracking, resolution and its variations — the Davis-
Putnam algorithm is one of the known methods.
Some local search algorithms have been developed
to solve large size instances of the SAT problem
(Gu 1993).

Since we intended that the user of OTTER can eas-
ily use special methods to handle problems of finite
domain, we of course must have a procedure which
converts first order formulas into propositional clauses.
We found that automatically converting first-order
formulas into propositional formulas is not a trivial
task. One of the 33 Research Problems proposed in
(Wos 1988) by Wos asks what criteria can be used ef-
fectively to choose between predicate and function no-
tation for representing the problem under study. For
instance, “the product of a and b equals ¢” can be writ-
ten as P(a,b,c) or prod(a,b) = ¢. However, no refer-
ences are given in (Wos 1988) for the conditions which
ensure that the initial formulas are satisfiable iff the
converted formulas are. The existence of quantifiers in
the formulas makes the problem more complicated.
For example, suppose one of the axioms for a group
of order 7 is axiom z x i(x) = e, where x is a variable
over a domain S of seven elements, say S = {1, 2, ..., 7}.
We may obtain 7 instances of this axiom by replacing
z by a value from 1 to 7. The resulting clauses are
ground (i.e., variable-free) but they are not proposi-
tional clauses. We have to replace functions like * and
1 by predicate symbols. We may introduce a predicate
P; such that P;(x,y) is true whenever i(z) = y. To
get rid of i(z) in that axiom, we may assume i(z) = u
and use P;(z,u) = (z *u = e) as a new axiom. Now

the question is: Since the two axioms are not logically
equivalent, what additional information is needed to
make them equivalent ? This questions must be an-
swered if we want to correctly convert a set of formulas
into a set of propositional clauses. We are also inter-
ested in the efficiency of the conversion, in the sense
that the converted clauses have shorter and less dupli-
cated clauses. These questions will be answered in this
paper.

Traditional constraint solving methods do not need
to convert general formulas into propositional clauses.
For instance, FINDER (Stanley 1992) uses generate-
and-test approach to test constraints represented by
clauses. While the design philosophy of FINDER and
ModGen are very different, FINDER has a great im-
pact on the design of ModGen. Because of the different
design philosophies, ModGen offers some advantages:

e ModGen accepts arbitrary formulas (including quan-
tifiers) while FINDER, accepts only clauses.

e ModGen can be used to generate propositional
clauses for other programs and it is very easy to
change SAT decision procedures in ModGen.

e Experimental results show that ModGen outper-
forms FINDER for almost all the examples tried.

This paper is organized as follows: At first, we give
an overview of ModGen and show by examples how
ModGen is used. Next, we describe how to correctly
and efficiently convert general formulas into proposi-
tional clauses; we discuss how to handle function sym-
bols and quantifiers. Finally, we present some experi-
mental results of ModGen.

Overview of ModGen

ModGen mainly consists of two modules, a proposi-
tional clause generator and the program SATO (SAt-
isfiability Testing Optimized) (Zhang 1993, Zhang &
Stickel 1994) which is an efficient implementation of
the Davis-Putnam algorithm (Davis & Putnam 1960).
The overall structure of ModGen is shown in Figure 1.
ModGen takes first order formulas either in arbitrary
form or in clausal form as input, and generates mod-
els of input formulas. All variables in input formulas
should be of finite domain. Also, ranges of all functions
in input formulas should be finite.

The propositional clause generator generates propo-
sitional clauses in clausal form from input formulas. If
input formulas are not in clausal form, ModGen trans-
forms them in clausal form, and then generates propo-
sitional clauses.

The generated propositional clauses are fed to
SATO, which determines the satisfiability of the
clauses. If the clauses are satisfiable, SATO generates
their Herbrand models, that is, which propositional
variables are set to true. Since there is a one-to-one
mapping between a propositional variable and a func-
tion instance, from the Herbrand models generated by

first order

formulas/ propositional clauses

SATO

— s

clauses PrOP;)S"“‘mal propositional
e(‘h:r:teor propositional solutions decision

models <«—{ & procedure

Figure 1: Overview of ModGen

SATO, ModGen can print out solutions in terms of
function values.

The input to ModGen consists of three parts: (a)
sorts of finite elements, (b) functions (including pred-
icates); and (c) (multisort) first order formulas. Mod-
Gen decides whether there exist any (or how many)
models for the input formulas.

In the beginning of this project, we decided to use
the syntax of OTTER (McCune 1990) for input formu-
las and clauses. This is because

e OTTER is the best known resolution-based theorem
prover and is very popular in the community of au-
tomated theorem proving;

¢ we wish that ModGen become a complementary tool
to OTTER for finite domain problems and many OT-
TER’S input files can be directly input to ModGen
without any modification.

For the above reasons, some code of OTTER has been
used in implementing ModGen. Especially, the entire
module for parsing input formulas has been used, so
the syntax of ModGen is the same as that of OTTER.

We illustrate the use of ModGen by two simple ex-
amples.

The Queen Problem

The 8-queen problem is to find placements of 8 queens
over an 8 x 8 chess board so that no two queens attack
each other.

sort(board, 8). J the number of queens is 8
func(p(board, board), bool).
% p(i, j) = true iff a queen is placed at (i, j).

list(usable). % a list of clauses

% (a) No two queens are on the same column.

-p(x, 2) | -ply, 2) | (x=1y).

% (b) No two queens are on the same row.

-plz, x) | -plz,) | (x=1y).

% (c) No two queens are on the same diagonal.
-p(x,y) | -pu,v) | $ABS(x-u) = $ABS(y-v) | (x=u).
end_of_list.

formula_list(usable). % a list of formulas
% (d) Each column must have a queen.

(all x exists y p(x, y)).

end_of_list.

Note that the built-in function $ABS(x) returns the
absolute value of z. It takes less than 0.3 second on
an IBM RS6000 for ModGen to decide that there are
92 solutions to the above input. If the user likes to

test the 15-queen problem, the only change to the in-
put file is to replace 8 by 15. It takes 2.6 hours for
ModGen to decide that there are 2,279,184 solutions
for the case of 15. This result cannot compare to that
of Sosic and Gu whose program can decide 3,000,000
queens in one minute (Sosic & Gu 1991). However, it
is known that there exist solutions to any case but the
exact numbers of solutions for large queen problems
are still unknown. ModGen may be used to answer
such unknown questions while Sosic and Gu’s program
cannot.

The queen problem can be also specified in terms of
a function ¢ such that ¢(i) = j iff p(i, j). Below is an
input file to ModGen:

assign(MODEL, 1). % search only one model
sort (row, 8). % the number of queens is 8
func(q(row), row, bijective).
% q being bijective implies that no two queens
% in the same row or the same column and
% there exists a queen for each column.
list (usable).
% No two queens are on the same diagonal.
-(q(u) = q(v) + x) | -($4BS(u - v) =x) | (x = 0).
end_of_list.

The second input file is much simpler than the first
one — this shows the flexibility of ModGen for specify-
ing problems. The following is the result of executing
ModGen with the above input.

Model #1:
row | 01234567

1
+

q | 31625740

The Non-Obviousness Problem

The second example shows how easy to use ModGen,
that is, ModGen can use some of OTTER’s input file
without any change. The example is called the “non-
obviousness” problem and has appeared in many issues
of Newsletter of Association on Automated Reasoning
(Pelletier & Rudnicki 1986). The input file of OTTER
(v3.0.0) is as follows:

set (auto).
list (usable).
-p(a,b).
-q(c,d).
p(x,y) | q(x,y).
q(x,y) | -q(y,x).
p(x,z) | -p(x,y) | -p(y,2).
q(x,z) | -qx,y) | -q(y,=z).
end_of_list.

The same file can be used by ModGen: The com-
mand set (auto), which automatically turns on a set
of inference rules of OTTER, is skipped by ModGen.
ModGen assumes by default that p and q are binary
predicates over S = {a, b, c, d}. While it takes 3.8
seconds for OTTER to show that the input clauses are
unsatisfiable, it takes only 0.04 second on the same
machine for ModGen; our result is the best among the

results reported in the Newsletters of Automated Rea-
soning.

Propositional Clause Generation

In this section, we present a procedure which can
correctly and efficiently convert general formulas into
propositional clauses for functions of finite domains.
The procedure consists of the following steps:

1. Transform general formulas into clauses.

2. Eliminate function symbols in each clause by intro-
ducing new predicates and variables.

3. Instantiate variables in each clause by values and
evaluate the truth value of built-in functions and
predicates.

4. Return each instantiated clause in an abstract form.

Methods for transforming general formulas into
clauses can be found in many textbooks on logic pro-
gramming. An abstract form of a clause is a list of
integers such that the absolute value of each integer is
the index of a propositional variable and the sign of
the integer is the sign of the literal. In the following,
we discuss only steps 2 and 3.

Eliminating function symbols

We will use functions with only one argument for no-
tational convenience; functions with more than one ar-
gument can be treated similarly. As mentioned in the
introduction, for each function f, we introduce a pred-
icate Py such that f(z) =y iff P¢(z,y). We can elimi-
nate each term f(¢) in a clause formula by substituting
a new variable u for f(t), assuming f(¢) = u. Thus,
the transformation rule is as follows.

3) L{f(®) | M
—Ps(t,2) | L(z) | Mf(t) ¢ 2]

where M is a disjunction of literals, L(f(t)) is a literal
containing the term f(¢) and f is not a predicate.

The soundness and completeness of the above rule
is ensured by the totalness of f:

Theorem 1 Suppose f(x) = y iff Pr(x,y) and f is
total. For any clause L(f(t)) | M and any set S of
clauses, S1 = SU{L(f(t)) | M} is satisfiable if and
only if > = S U {~Py(t,2) | L(z) | Mf(t) + z]} is
satisfiable.

Proof: If Sy is satisfiable, because L(f(t)) | M implies
P (t,z) | L(z) | M[f(t) < z], S2 must be satisfiable.

If S; is unsatisfiable, by Herbrand’s theorem, there
exists a unsatisfiable set G1 of ground instances of S;.
For any Herbrand interpretation H on (G1, there much
exist a ground clause in G; which is false in H. If this
ground clause is not an instance of L(f(t)) | M, then
this ground clause must be an instance of Sy, so H will
falsify Ss.

If this ground clause is an instance of L(f(t)) | M,
then it can be written as o L(f(¢)) | c M for some sub-
stitution o. Because f is total, there must exist a value
a such that f(ot) = a. Consider the instance

(%) —Py(ot,a) | oL(a) | cM[f(t) < a]

of ~P¢(t,z) | L(z) | M[f(t) + z]. Because P¢(ot,a) iff
f(ot) = a, =P¢(ot,a) is false under H. The rest liter-
als of (x) are also false under H because o L(f(t)) | c M
is false under H and f(ot) = a. Hence H will falsify
Sa, too. In other words, every interpretation will fal-
sify Sa, so S3 must be unsatisfiable. O.

While the totalness of functions is a sufficient condi-
tion for the above theorem, we were unable to weaken
this condition further. In (Wos 1988), it is said that an
equation like prod(prod(z,v),z) = prod(z,prod(y, z))
could be replaced by two clauses when using predicate
notation:

_P(':U7y7u) | _P(y7z7w) | —P(u,z,v) | P(.’L‘,U),U),
_P(mayau) | —P(y,Z,’LU) | _P(mvwav) | P(U,Z,’U).

By the above theorem, if prod is total, then only one
clause is sufficient. However, when prod is partial, we
do not know if the two clauses are sufficient to replace
prod(prod(z,y), z) = prod(z, prod(y, z)).

To ensure that f(z) =y iff P¢(z,y), some formulas
about P; should be added:

1. Totalness: Vz3y . Ps(x,y).

2. Image Uniqueness:
VaVy1 VY2 - Pr(z,y1) A Pr(z,y2) = (y1 = y2)-

In ModGen, the transformation rule (3) is repeat-
edly applied to the general clauses until no functions
are left, with the exception that when function sym-
bols appear with equalities, the application of the rule
becomes selective.

Dealing with equalities

When functions are used in equalities, we use special
techniques to reduce the number of ground clauses gen-
erated from general clauses. There are two cases: (1)
equalities between a function and a variable/constant,
and (2) equalities between functions.

For the first case, say f(z) = y, we directly trans-
form this equation into a literal, without introducing
a new variable, that is, Py(z,y) instead of u = y |
—Pf(x,u); the latter is obtained by the transforma-
tion rule (8) and would result in too many ground
clauses, because it introduces a new variable. The fol-
lowing lemmas ensures that the former transformation
is sound.

Lemma 2 If the clauses for the totalness and image-
uniqueness properties of f are present, then Pf(z,y)
and u =y | = P¢(z,u) are logically equivalent.

Proof: Note that the instances of u = y | =P¢(z,u) (af-
ter removing evaluable literals) are of form =Py (a;, ax)
and the instances of Py(x,y) are of form Py(a;,a;).
The ground clauses obtained from the totalness prop-
erty of a function, that is, assuming the range of f(x)
is {a1,...,an}, are:

Pi(z,a1) | ... | Pr(z,an) (1)

for all z. Using resolution, for any value a; and aj;,
we can deduce Py(a;,a;) from instances of u = a; |
—P¢(a;,u) and (1).

On the other hand, we can also deduce —P(a;, ax)
from Py (a;,a;) and the ground clause generated from
the image-uniqueness property. Hence, Ps(z,y) and
u =y | Pf(z,u) are logically equivalent under the pres-
ence of the totalness and image-uniqueness properties
of f. |

For the second case, say f(z) = g(y), we have two
choices, to remove f(z) first or to remove g(y) first,
and depending on the removal sequence, the resulting
clause will be different. If we remove f(z) first, then
the resulting clause will be =Py (z,u) | P,(y,u). On the
other hand, if we remove g(y) first, then the resulting
clause will be Py(y,v) | =P¢(z,v). When a function is
total, by the theorem in the previous subsection, it is
sufficient to generate either of the two clauses.

Dealing with Skolem functions

ModGen takes first order formulas with quantifiers as
input and then transforms these formulas into clauses;
skolem functions may be introduced during this pro-
cess. Skolem functions can be treated as ordinary
functions which have the totalness and the image-
uniqueness properties.

Skolem constants are also treated as ordinary func-
tions, that is, O-arity functions. The difference is that
the image-uniqueness property can not be enforced.

Although treating skolem functions as ordinary func-
tions is sufficient, for efficiency, we treat some skolem
functions specially. If a skolem function has all the
universally quantified variables as its arguments and
does not appear in other clauses, then we can elimi-
nate the skolem function as follows: Suppose f(z) is
a skolem function appearing in clause C(f(z)). We
replace f(x) by a new variable y and C(f(z)) is equiv-
alent to Jy . C(y). If the domain of y is {ai,...,an},
then Jy . C(y) is equivalent to C(a1) | --- | C(an). If &
skolem function appears in more than one clauses, then
we can not eliminate it this way, because Jy(P(y) A
Q(y)) is not equivalent to (JyP(y)) A (IQ(y)) in gen-
eral. For the same reason, we can eliminate skolem
constants if a clause containing skolem constants is a
ground clause and skolem constants do not appear in
other clauses.

Example 3 Consider the formula Vy3z f(z) = y. The
clausal form of this formula is f(S(y)) = y, where S(y)
is a skolem function. Assume that the sort of vari-
ables x and y contains n elements. Since the skolem

for each values of variables vy, ...,v, in C do
for each evaluable literal [in a clause C' do
if [is evaluated to false,
then delete [from C.
else exit // No propositional clause from C
endfor

// C consists of literals with unevaluable predicates.

generate a ground clause by instantiating each v;
endfor

Figure 2: Evaluation of literals and propositional
clause generation

function S has all universally quantified variables as
its arguments, we can eliminate the skolem function as
follows.

fla) =y .| flan) =y (2)

By instantiating (2), n ground clauses will be gen-
erated. On the contrary, if we did not eliminate
the skolem function first, then we would instantiate
Ps(u,y) | ~Ps(y,u) and n? ground clauses would be
generated. m|

Instantiating general clauses

The next step is to generate propositional clauses in
case that all evaluable literals are evaluated to false
while instantiating all variables in a clause. Evalu-
atable literals are those consisting of only variables
and builtin functions/predicates like =(equality). If
one of the evaluable literals in a clause is evaluated
to true, then no propositional clause will be generated
from the clause because the entire clause is eventually
true. On the other hand, if one of evaluable literals in
a clause is evaluated to false, then the literal will be
deleted from the clause because this literal is known to
be false, thereby having no effect on the evaluation of
the clause. The procedure for generating propositional
clauses from a clause, in which function instances are
removed, is in Figure 2.

Example 4 The clause f(z) < f(y) | * > y becomes,
by substituting u for f(z) and v for f(y),

“Py(z,u) | 2Pr(y,v) [u<v|z >y 3)

where Py (z,u) is true iff f(z) = v and Py(z,v) is true
iff f(z) =w.

The next step is to instantiate all the variables in the
formula 3. Assume for one instance that u = 2,v =
1,2 =1 and y = 2. Then a ground clause (—P¢(1,1) |
—P¢(0,2)) will be generated because both u < z and
x > y are evaluated to false. Assume another instance
that u = 1,v = 2,2 = 1 and y = 2. Then no ground
clause will be generated because u < z is evaluated to
true. O

Queen of No. of FINDER ModGen
order models (sec) No. of clauses runtime(sec)
5 10 0.20 170 0.07
6 38 0.25 302 0.17
7 40 0.42 490 0.31
8 92 0.75 744 0.61
9 352 1.95 1074 1.34
10 724 6.15 1490 3.46
11 2680 26.10 2002 11.65
12 14200 131.73 2620 52.03
13 73712 725.78 3354 267.97
14 365596 4212.52 4214 1500.27
15 2279184 26604.08 5210 9323.61

Table 1: Experiment with Queen problems

NOELIMINATION ELIMINATION

QG5 of No. of No. of runtime No. of runtime
order models clauses (sec) clauses (sec)
5 1 2211 0.14 1461 0.10

6 0 4552 0.31 3040 0.17

7 3 8401 0.47 5657 0.31

8 1 14301 0.81 9693 0.51

9 0 22879 1.29 15589 0.89

10 0 54846 4.09 43846 2.62
11 5 80279 10.01 64307 5.41
12 0 113683 25.37 91219 11.26
13 0 156573 562.84 125815 234.71

Table 2: Experiment with Quasigroup 5 problems

In general, it is possible that identical ground clauses
are generated more than once. ModGen avoids du-
plication of ground clauses only for symmetric cases.
When a clause to be instantiated is invariant to the
exchange of two variables, this clause is said to be sym-
metric with respect to the two variables. The follow-
ing example illustrates the elimination of redundant
ground clauses by the symmetry checking.

Example 5 Consider Ps(z,y) | Ps(z,2). Assume
that z = 1,y = 1 and z = 2. Then Pf(1,1) | P¢(1,2)
will be generated. Assume also that x = 1,y = 2
and z = 1. Then Pf(1,2) | Ps(1,1) will be generated.
Clearly, the two ground clauses are identical.

If we exchange y for z in the above clause, the clause
becomes Py(x,2) | Ps(z,y) which is identical to the
original clause. Then, it is sufficient to generate ground
clauses from Py (z,y) | P¢(x,2) only for y < z since all
ground clauses generated for y > z are redundant. O

It is also possible to generate fewer ground clauses
by applying some of the unit literal deletion and pure
literal deletion. However, this kind of checkings can be
done by the propositional decision procedure.

Experimental Results

We tested ModGen with the queen problem, quasi-
group problems, and several puzzles. The experiment
is done on a IBM RS6000/530. All times are taken as
the best of three runs.

The result of the experiment with the queen prob-
lem is shown in Table 1, which also includes the re-
sult of FINDER for performance comparison. Mod-
Gen runs as more than twice faster than FINDER for
queen problems of order > 10.

The experimental results with some quasigroup
problems (Stanley, Fujita, & Stickel 1993) are listed

GQ6 INDIRECT DIRECT
of No. of No. of run time No. of run time

order models clauses (sec) clauses (sec)
5 0 48121 4.19 2711 0.13
6 0 959296 86.38 5632 0.25
7 0 23676843 2290.65 10459 0.47
8 2 - - 17885 0.80
9 4 28711 1.37
10 0 43846 2.39
11 0 - - 64307 5.88
12 0 - - 91219 86.54
13 41760 - - 125815 3287.47

Table 3: Experiment with Quasigroup 6 problem

problem models No. of clauses runtime(sec)
Agatha 1 34 0.02
Nonobvious 0 162 0.04
Jobs 16 404 0.12
Steamroller 0 2250 0.21

Table 4: Experiment with puzzle problems

in Tables 2 and 3. The QG5 problem is to investigate
the existence of Latin squares satisfying the identity
(((y*x) xy) *y) = z (viewing the square as a multipli-
cation table). This problem includes two skolem func-
tions which can be eliminated as explained in the previ-
ous section. The data in the column under ELIMINA-
TION in Table 2 are the result of eliminating skolem
functions and the data under NOELIMINATION are
the result of treating the skolem function as ordinary
functions. Eliminating skolem functions not only gen-
erates smaller number of ground clauses but also ac-
celerates the search. The performance difference comes
from the fact that ModGen generates one less order of
ground clauses for formulas having skolem symbols.

The experimental results with another quasigroup
problem, QG6 (Stanley, Fujita, & Stickel 1993), are
is listed in Table 3. This problem is to investigate
the existence of Latin squares satisfying the identity
((zxy)*xy) = (z*(x*y)), which is an equality between
function instances ans is specially treated in ModGen.
The data in the column under INDIRECT in Table
3 are the result of employing the transformation of
f(z) =y tou =y | -Pr(x,u). The data under DI-
RECT in Table 3 are the result of employing the trans-
formation of f(z) =y to P¢(x,y). As shown in Table
3, the performance difference is amazingly large. We
could not experiment beyond order 7 for INDIRECT
because of the excessive computing time. This per-
formance difference is manifested by the observation
that the INDIRECT strategy generates one more or-
der of ground clauses for each literal having equality
with function instances.

We also experimented with some puzzle prob-
lems such as Non-obviousness, Schubert’s Steamroller
(Stickel 1986), Jobs and Agatha; the results are listed
in Table 4. Shubert’s Steamroller has the conclusion
negated so that it is unsatisfiable. This experiment
shows that ModGen can solve puzzle problems very
fast.

References

Bennett, F. 1989 Quasigroup Identities and Mendel-
sohn Designs, Canadian Journal of Mathematics 41:
341-368.

Gu, J. 1993 Local search for satisfiability (SAT) prob-
lem, IEEE Trans. on Systems, Man, and Cybernet-
ics 23(4): 1108-1129.

Davis, M; Putnam, H 1960 A computing procedure
for quantification theory, J. of ACM 7: 201-215.

McCune, W. W 1990 Otter 2.0 users’ guide, Mathe-
matics and Computer Science Division, Argonne Na-
tional Laboratory, Argonne, Illinois.

Pelletier, F. J; Rudnicki, P 1986 Non-Obviousness,
Automated Reasoning Newsletter 6: 4-5.

Selman, B.; Levesque, H.; Mitchell, D. 1992 A new
method for solving hard satisfiability problems, In
Proceedings of AAAI’92: 440-446.

Slaney, J. 1992 FINDER, Finite Domain Enumera-
tor: Version 2.0 Notes and Guide, Technical report
TR-ARP-1/92, Automated Reasoning Project, Aus-
tralian National University.

Slaney, J.; Fujita, M.; and Stickel, M. Automated rea-
soning and exhaustive search: Quasigroup existence
problems To appear in Computers and Mathematics
with Applications.

Sosic, R.; Gu, J. 1991 3,000,000 queens in less than
one minute, SIGART Bulletin, 2(2): 22-24

Stickel, M. 1986 Shubert’s steamroller problem: for-
mulations and solutions, J. of Automated reasoning
2: 89-101.

Wos, L. 1988 Automated reasoning: 83 Basic research
problems, Prentice Hall, New Jersey.

Zhang, H. 1993 SATO: A decision procedure for
propositional logic. Association for Automated Rea-
soning Newsletter, 22: 1-3.
Zhang, H.; Stickel, M.: 1994
Davis-Putnam Algorithm by Tries,
manuscript.

Implementing the
Unpublished

