SAT: Propositional Satisfiability and Beyond

© Roberto Sebastiani

 ICT Graduate School Course — Trento, May 2002

SAT: Propositional Satisfiability and Beyond

Roberto Sebastiani

Dept. of Information and Communication Technologies University of Trento, Italy rseba@dit.unitn.it http://www.dit.unitn.it/~rseba ©Roberto Sebastiani SAT: Propositional Satisfiability and Beyond

© Roberto Sebastiani

PART 1:

PROPOSITIONAL SATISFIABILITY

ICT Graduate School, Trento, May-June 2002

© Roberto Sebastiani

Basics on SAT

Basic notation & definitions

Boolean formula

- $\bullet \ \top, \bot$ are formulas
- A propositional atom $A_1, A_2, A_3, ...$ is a formula;
- if φ_1 and φ_2 are formulas, then $\neg \varphi_1$, $\varphi_1 \land \varphi_2$, $\varphi_1 \lor \varphi_2$, $\varphi_1 \lor \varphi_2$, $\varphi_1 \rightarrow \varphi_2$, $\varphi_1 \leftrightarrow \varphi_2$ are formulas.
- Literal: a propositional atom A_i (positive literal) or its negation $\neg A_i$ (negative literal)
- $Atoms(\varphi)$: the set $\{A_1, ..., A_N\}$ of propositional atoms occurring in φ .
- a boolean formula can be represented as a tree or as a DAG

Basic notation & definitions (cont)

- Total truth assignment μ for φ : $\mu : Atoms(\varphi) \mapsto \{\top, \bot\}.$
- Partial Truth assignment μ for φ :
 - $\mu: \mathcal{A} \longmapsto \{\top, \bot\}, \mathcal{A} \subset Atoms(\varphi).$
- Set and formula representation of an assignment:
 - μ can be represented as a set of literals: EX: { $\mu(A_1) := \top, \mu(A_2) := \bot$ } \implies { $A_1, \neg A_2$ }
 - μ can be represented as a formula: EX: $\{\mu(A_1) := \top, \mu(A_2) := \bot\} \implies A_1 \land \neg A_2$

Basic notation & definitions (cont)

$$-\mu \models \varphi$$
 (μ satisfies φ):

•
$$\mu \models A_i \iff \mu(A_i) = \top$$

•
$$\mu \models \neg \varphi \Longleftrightarrow not \ \mu \models \varphi$$

•
$$\mu \models \varphi_1 \land \varphi_2 \iff \mu \models \varphi_1 \text{ and } \mu \models \varphi_2$$

$$-\varphi$$
 is satisfiable iff $\mu \models \varphi$ for some μ

$$-\varphi_1 \models \varphi_2$$
 (φ_1 entails φ_2):

 $\varphi_1 \models \varphi_2 \text{ iff for every } \mu \ \mu \models \varphi_1 \Longrightarrow \mu \models \varphi_2$

- $\models \varphi \ (\varphi \text{ is valid}):$ $\models \varphi \text{ iff for every } \mu \ \mu \models \varphi$
- φ is valid $\iff \neg \varphi$ is not satisfiable

Equivalence and equi-satisfiability

- $\varphi_1 \text{ and } \varphi_2 \text{ are equivalent iff, for every } \mu,$ $\mu \models \varphi_1 \text{ iff } \mu \models \varphi_2$
- φ_1 and φ_2 are equi-satisfiable iff exists μ_1 s.t. $\mu_1 \models \varphi_1$ iff exists μ_2 s.t. $\mu_2 \models \varphi_2$
- $-\varphi_1, \varphi_2$ equivalent

 $\begin{array}{c} \Downarrow & \swarrow \\ \varphi_1, \varphi_2 \text{ equi-satisfiable} \end{array}$

- EX: $\varphi_1 \lor \varphi_2$ and $(\varphi_1 \lor \neg A_3) \land (A_3 \lor \varphi_2)$, A_3 not in $\varphi_1 \lor \varphi_2$, are equi-satisfiable but not equivalent.

Complexity

- The problem of deciding the satisfiability of a propositional formula is NP-complete [14].
- The most important logical problems (validity, inference, entailment, equivalence, ...) can be straightforwardly reduced to satisfiability, and are thus (co)NP-complete.

\Downarrow

No existing worst-case-polynomial algorithm.

© Roberto Sebastiani

NNF, CNF and conversions

ICT Graduate School, Trento, May-June 2002

POLARITY of subformulas

Polarity: the number of nested negations modulo 2.

- Positive/negative occurrences
 - φ occurs positively in φ ;
 - if $\neg \varphi_1$ occurs positively [negatively] in φ , then φ_1 occurs negatively [positively] in φ
 - if $\varphi_1 \land \varphi_2$ or $\varphi_1 \lor \varphi_2$ occur positively [negatively] in φ , then φ_1 and φ_2 occur positively [negatively] in φ ;
 - if $\varphi_1 \rightarrow \varphi_2$ occurs positively [negatively] in φ , then φ_1 occurs negatively [positively] in φ and φ_2 occurs positively [negatively] in φ ;
 - if $\varphi_1 \leftrightarrow \varphi_2$ occurs in φ , then φ_1 and φ_2 occur positively and negatively in φ ;

Negative normal form (NNF)

- $-\varphi$ is in Negative normal form iff it is given only by applications of \land,\lor to literals.
- every φ can be reduced into NNF:
 - 1. substituting all \rightarrow 's and \leftrightarrow 's:

 $\varphi_1 \to \varphi_2 \implies \neg \varphi_1 \lor \varphi_2$

 $\varphi_1 \leftrightarrow \varphi_2 \implies (\neg \varphi_1 \lor \varphi_2) \land (\varphi_1 \lor \neg \varphi_2)$

2. pushing down negations recursively:

$$\neg(\varphi_1 \land \varphi_2) \implies \neg\varphi_1 \lor \neg\varphi_2$$
$$\neg(\varphi_1 \lor \varphi_2) \implies \neg\varphi_1 \land \neg\varphi_2$$
$$\neg\neg\varphi_1 \implies \varphi_1$$

- The reduction is linear if a DAG representation is used.
 - Preserves the equivalence of formulas.

ICT Graduate School, Trento, May-June 2002

Conjunctive Normal Form (CNF)

 $-\varphi$ is in Conjunctive normal form iff it is a conjunction of disjunctions of literals:

$$\bigwedge_{i=1}^{L} \bigvee_{j_i=1}^{K_i} l_{j_i}$$

- the disjunctions of literals $\bigvee_{j_i=1}^{K_i} l_{j_i}$ are called clauses
- Easier to handle: list of lists of literals.

Classic CNF Conversion $CNF(\varphi)$

- Every φ can be reduced into CNF by, e.g.,
 - 1. converting it into NNF;
 - 2. applying recursively the DeMorgan's Rule:

 $(\varphi_1 \land \varphi_2) \lor \varphi_3 \implies (\varphi_1 \lor \varphi_3) \land (\varphi_2 \lor \varphi_3)$

- Worst-case exponential.
- $Atoms(CNF(\varphi)) = Atoms(\varphi).$
- $-CNF(\varphi)$ is equivalent to φ .
- Normal: if φ_1 equivalent to φ_2 , then $CNF(\varphi_1)$ identical to $CNF(\varphi_2)$ modulo reordering.
- Rarely used in practice.

Labeling CNF conversion $CNF_{label}(\varphi)$ [43, 18]

- Every φ can be reduced into CNF by, e.g.,
 - 1. converting it into NNF;
 - 2. applying recursively bottom-up the rules:

 $\varphi \implies \varphi[(l_i \lor l_j)|B] \land CNF(B \leftrightarrow (l_i \lor l_j))$

- $\varphi \implies \varphi[(l_i \wedge l_j)|B] \wedge CNF(B \leftrightarrow (l_i \wedge l_j))$
- l_i, l_j being literals and B being a "new" variable.
- Worst-case linear.
- $-Atoms(CNF_{label}(\varphi)) \supseteq Atoms(\varphi).$
- $-CNF_{label}(\varphi)$ is equi-satisfiable w.r.t. φ .
- Non-normal.
- More used in practice.

Labeling CNF conversion CNF_{label} (improved)

- As in the previous case, applying instead the rules:

 $\varphi \implies \varphi[(l_i \lor l_j)|B] \land CNF(B \to (l_i \lor l_j)) \text{ if } (l_i \lor l_j) \text{ positive}$

 $\varphi \implies \varphi[(l_i \lor l_j)|B] \land CNF((l_i \lor l_j) \to B) \text{ if } (l_i \lor l_j) \text{ negative}$

 $\varphi \implies \varphi[(l_i \wedge l_j)|B] \wedge CNF(B \rightarrow (l_i \wedge l_j)) \text{ if } (l_i \wedge l_j) \text{ positive}$

 $\varphi \implies \varphi[(l_i \wedge l_j)|B] \wedge CNF((l_i \wedge l_j) \rightarrow B) \text{ if } (l_i \wedge l_j) \text{ negative}$

– Smaller in size.

© Roberto Sebastiani

k-SAT and Phase Transition

ICT Graduate School, Trento, May-June 2002

The satisfiability of k-CNF (k-SAT) [21]

- k-CNF: CNF s.t. all clauses have k literals
- the satisfiability of 2-CNF is polynomial
- the satisfiability of k-CNF is NP-complete for $k\geq 3$
- every k-CNF formula can be converted into 3-CNF:

$$l_1 \lor l_2 \lor \ldots \lor l_{k-1} \lor l_k$$
$$\Downarrow$$
$$(l_1 \lor l_2 \lor B_1) \land$$
$$(\neg B_1 \lor l_3 \lor B_2) \land$$

$$(\neg B_{k-4} \lor l_{k-2} \lor B_{k-3}) \land (\neg B_{k-3} \lor l_{k-1} \lor l_k)$$

. . .

Random K-CNF formulas generation

Random k-CNF formulas with N variables and L clauses:

DO

- 1. pick with uniform probability a set of k atoms over N
- 2. randomly negate each atom with probability 0.5
- 3. create a disjunction of the resulting literals
- UNTIL *L* different clauses have been generated;

Random k-SAT plots

- fix k and N
- for increasing *L*, randomly generate and solve (500,1000,10000,...) problems with k, L, N
- plot
 - satisfiability percentages
 - median/geometrical mean CPU time/# of steps against L/N

The phase transition phenomenon: SAT % Plots [40, 38]

- Increasing L/N we pass from 100% satisfiable to 100% unsatisfiable formulas
- the decay becomes steeper with N
- for $N \rightarrow \infty$, the plot converges to a step in the cross-over point ($L/N \approx 4.28$ for k=3)
- Revealed for many other NP-complete problems
- Many theoretical models [52, 22]

The phase transition phenomenon: CPU times/step

Using search algorithms (DPLL):

- Increasing L/N we pass from easy problems, to very hard problems down to hard problems
- the peak is centered in the 50% satisfiable point
- the decay becomes steeper with N
- for $N \rightarrow \infty$, the plot converges to an impulse in the cross-over point ($L/N \approx 4.28$ for k=3)
- easy problems ($L/N \leq \approx 3.8$) increase polynomially with N, hard problems increase exponentially with N
- Increasing L/N, satisfiable problems get harder, unsatisfiable problems get easier.

ICT Graduate School, Trento, May-June 2002

MEDIAN

GEOMEAN

© Roberto Sebastiani

Basic SAT techniques

Truth Tables

- Exhaustive evaluation of all subformulas:

$arphi_1$	$arphi_2$	$\varphi_1 \wedge \varphi_2$	$\varphi_1 \lor \varphi_2$	$\varphi_1 \rightarrow \varphi_2$	$\varphi_1 \leftrightarrow \varphi_2$
	\bot		\perp	Т	Т
\perp	Т		Т	Т	\perp
Т	\bot		Т	\perp	\bot
Т	Т	Т	T	Т	Т

- Requires polynomial space.
- Never used in practice.

Semantic tableaux [51]

- Search for an assignment satisfying φ
- applies recursively elimination rules to the connectives
- If a branch contains A_i and $\neg A_i$, (ψ_i and $\neg \psi_1$) for some
 - *i*, the branch is closed, otherwise it is open.
- if no rule can be applied to an open branch μ , then $\mu \models \varphi$;
- if all branches are closed, the formula is not satisfiable;

Tableau elimination rules

Tableau algorithm

function Tableau(Γ) if $A_i \in \Gamma$ and $\neg A_i \in \Gamma$ /* branch closed */ then return False; if $(\varphi_1 \land \varphi_2) \in \Gamma$ /* \land -elimination */ then return *Tableau*($\Gamma \cup \{\varphi_1, \varphi_2\} \setminus \{(\varphi_1 \land \varphi_2)\}$); /* ¬¬-elimination */ if $(\neg \neg \varphi_1) \in \Gamma$ then return Tableau($\Gamma \cup \{\varphi_1\} \setminus \{(\neg \neg \varphi_1)\}$); /* v-elimination */ if $(\varphi_1 \lor \varphi_2) \in \Gamma$ then return *Tableau*($\Gamma \cup \{\varphi_1\} \setminus \{(\varphi_1 \lor \varphi_2)\}$) or Tableau($\Gamma \cup \{\varphi_2\} \setminus \{(\varphi_1 \lor \varphi_2)\}$);

return *True*;

/* branch expanded */

Semantic Tableaux – summary

- Branches on disjunctions
- Handles all propositional formulas (CNF not required).
- Intuitive, modular, easy to extend
 - \implies loved by logicians.
- Rather inefficient
 - \implies avoided by computer scientists.
- Requires polynomial space

DPLL [17, 16]

- Davis-Putnam-Longeman-Loveland procedure (DPLL)
- Tries to build recursively an assignment μ satisfying φ ;
- At each recursive step assigns a truth value to (all instances of) one atom.
- Performs deterministic choices first.

DPLL rules

$$\frac{\varphi_1 \wedge (l) \wedge \varphi_2}{(\varphi_1 \wedge \varphi_2)[l|\top]} (Unit)$$

$$\frac{\varphi}{\varphi[l|\top]} \ (l \ Pure)$$

 $\frac{\varphi}{\varphi[l|\top] \quad \varphi[l|\bot]} \ (split)$

(*l* is a pure literal in φ iff it occurs only positively).

DPLL Algorithm

function $DPLL(\varphi, \mu)$		
$\mathbf{if} \; \varphi = \top$	/* base	*/
then return <i>True</i> ;		
$\mathbf{if} \; \varphi = \bot$	/* backtra	ack */
then return <i>False</i> ;		
if {a unit clause (l) occurs in φ }	/* unit	*/
then return DPLL($assign(l, arphi), \mu \wedge l$);		
if $\{a \text{ literal } l \text{ occurs } pure \text{ in } \varphi\}$	/* pure	*/
then return DPLL($assign(l, arphi), \mu \wedge l$);		
$I := choose-literal(\varphi);$	/* split	*/
$\mathbf{return} \hspace{0.2cm} \textit{DPLL(}assign(l, arphi), \mu \wedge l \textit{)} \hspace{0.2cm} \mathbf{or}$		
$\textit{DPLL}(assign(\neg l, arphi), \mu \land \neg l);$		

DPLL – summary

- Branches on truth values.
- Postpones branching as much as possible.
- Handles CNF formulas (non-CNF variant known [3, 27]).
- Mostly ignored by logicians.
- Probably the most efficient SAT algorithm
 - \implies loved by computer scientists.
- Requires polynomial space
- Choose_literal() critical!
- Many very efficient implementations [55, 50, 7, 42].
- A library: SIM [26]

Ordered Binary Decision Diagrams (OBDDs) [11]

- Normal representation of a boolean formula.
- variable ordering $A_1, A_2, ..., A_n$ imposed a priory.
- Binary DAGs with two leaves: 1 and 0
- Paths leading to 1 represent models
 Paths leading to 0 represent counter-models
- Once built, logical operations (satisfiability, validity, equivalence) immediate.
- Finds all models.

(Implicit) OBDD structure

- $OBDD(\top, \{...\}) = 1,$
- $OBDD(\bot, \{\ldots\}) = 0,$
- $OBDD(\varphi, \{A_1, A_2, ..., A_n\}) = if A_1$
 - then $OBDD(\varphi[A_1|\top], \{A_2, ..., A_n\})$ else $OBDD(\varphi[A_1|\bot], \{A_2, ..., A_n\})$
© Roberto Sebastiani

OBDD - Examples

Figure 1: BDDS of $(a_1 \leftrightarrow b_1) \land (a_2 \leftrightarrow b_2) \land (a_3 \leftrightarrow b_3)$ with different variable orderings

ICT Graduate School, Trento, May-June 2002

Incrementally building an OBDD

$$- obdd_build(\top, \{...\}) := 1,$$

- $obdd_build(\bot, \{...\}) := 0,$
- $obdd_build((\varphi_1 op \varphi_2), \{A_1, ..., A_n\}) :=$

 $obdd_merge(op,$

 $obdd_build(\varphi_1, \{A_1, ..., A_n\}),$ $obdd_build(\varphi_2, \{A_1, ..., A_n\}),$ $\{A_1, ..., A_n\}$)) $op \in \{\wedge, \lor, \rightarrow, \leftrightarrow\}$

OBDD – summary

- (Implicitly) branch on truth values.
- Handle all propositional formulas (CNF not required).
- Find all models.
- Factorize common parts of the search tree (DAG)
- Require setting a variable ordering a priori (critical!)
- Very efficient for some problems (circuits, model checking).
- Require exponential space in worst-case
- Used by Hardware community, ignored by logicians, recently introduced in computer science.

Incomplete SAT techniques: GSAT [48]

- Hill-Climbing techniques: GSAT
- looks for a complete assignment;
- starts from a random assignment;
- Greedy search: looks for a better "neighbor" assignment
- Avoid local minima: restart & random walk

GSAT algorithm

function $GSAT(\varphi)$ for i := 1 to Max-tries do $\mu := rand-assign(\varphi);$ for j := 1 to Max-flips do if $(score(\varphi, \mu) = 0)$ then return True; else Best-flips := hill-climb(φ, μ); $A_i := rand-pick(Best-flips);$ $\mu := flip(A_i, \mu);$

end

end

return "no satisfying assignment found".

GSAT – summary

- Handle only CNF formulas.
- Incomplete
- Extremely efficient for some (satisfiable) problems.
- Require polynomial space
- Used in Artificial Intelligence (e.g., planning)
- Variants: GSAT+random walk, WSAT
- Non-CNF Variants: NC-GSAT [45], DAG-SAT [47]

© Roberto Sebastiani

SAT for non-CNF formulas

Non-CNF DPLL [3]

function NC_DPLL(φ, μ)		
$\mathbf{if}\; \varphi = \top$	/* base	*/
then return <i>True</i> ;		
$\mathbf{if} \; \varphi = \bot$	/* backtra	ack */
then return <i>False</i> ;		
if $\{\exists l \text{ s.t. equivalent_unit } (l, \varphi)\}$	/* unit	*/
then return NC_DPLL($assign(l, arphi), \mu$	$\iota \wedge l$);	
if $\{\exists l \text{ s.t. equivalent_pure}(l, \varphi)\}$	/* pure	*/
then return NC_DPLL($assign(l, arphi), \mu$	$\iota \wedge l$);	
$I := choose-literal(\varphi);$	/* split	*/
return NC_DPLL($assign(l, \varphi), \mu \wedge l$) or		
$NC_{-}DPLL(assign(\neg l, arphi), \mu \land \neg l);$		

Non-CNF DPLL (cont.)

- $equivalent_unit(l, \varphi)$:

 $equivalent_unit(l, l_1)$ $:= \top if l = l_1$

 \perp otherwise

 $equivalent_unit(l, \varphi_1 \land \varphi_2) := equivalent_unit(l, \varphi_1) \text{ or }$

 $equivalent_unit(l, \varphi_2)$

 $equivalent_unit(l, \varphi_1 \lor \varphi_2) := equivalent_unit(l, \varphi_1) and$ $equivalent_unit(l, \varphi_2)$

Non-CNF DPLL (cont.)

- $equivalent_pure(l, \varphi)$:

 $equivalent_pure(l, l_1)$

$$:= \perp if l = \neg l_1$$

 \top otherwise

 $equivalent_pure(l, \varphi_1 \land \varphi_2) := equivalent_pure(l, \varphi_1)$ and

 $equivalent_pure(l, \varphi_2)$

 $equivalent_pure(l, \varphi_1 \lor \varphi_2) := equivalent_pure(l, \varphi_1) and$ $equivalent_pure(l, \varphi_2)$

Applying DPLL to $CNF_{label}(\varphi)$ [27, 25]

 $- CNF(\varphi) = O(2^{|\varphi|})$

 \implies inapplicable in most cases.

- $CNF_{label}(\varphi)$ introduces $K = O(|\varphi|)$ new variables \implies size of assignment space passes from 2^N to 2^{N+K}
- Idea: values of new variables derive deterministically from those of original variables.
- Realization: restrict $Choose_literal(\varphi)$ to split first on original variables

 \implies DPLL assigns the other variables deterministically.

Applying DPLL to $CNF_{label}(\varphi)$ (cont)

- If basic $CNF_{label}(\varphi)$ is used:

. . .

 $\varphi \implies \varphi[(l_i \lor l_j)|B] \land CNF(B \leftrightarrow (l_i \lor l_j))$

then B is deterministically assigned by unit propagation if l_i and l_j are assigned.

- If the improved $CNF_{label}(\varphi)$ is used:

 $\varphi \implies \varphi[(l_i \lor l_j)|B] \land CNF(B \to (l_i \lor l_j)) \text{ if } (l_i \lor l_j) \text{ positive}$

then **B** is deterministically assigned:

- by unit propagation if l_i and l_j are assigned to \perp .
- by pure literal if one of l_i and l_j is assigned to \top .

Non-CNF GSAT [45]

function NC_GSAT(φ) for i := 1 to Max-tries do $\mu := \operatorname{rand-assign}(\varphi)$; for j := 1 to Max-flips do if $(s(\mu, \varphi) = 0)$ then return True; else Best-flips := hill-climb(φ, μ); $A_i := \operatorname{rand-pick}(\operatorname{Best-flips})$; $\mu := \operatorname{flip}(A_i, \mu)$;

end

end

return "no satisfying assignment found".

Non-CNF GSAT (cont.)

arphi	$s(\mu,arphi)$	$s^-(\mu, arphi)$
$arphi \ literal$	$ \left\{\begin{array}{ccc} 0 & if \ \mu \models \varphi \\ 1 & otherwise \end{array}\right. $	$ \left\{\begin{array}{ccc} 1 & if \ \mu \models \varphi \\ 0 & otherwise \end{array}\right. $
$igwedge_k arphi_k arphi_k$	$\sum_k s(\mu, arphi_k)$	$\prod_k s^-(\mu, arphi_k)$
$igee_k arphi_k$	$\prod_k s(\mu, arphi_k)$	$\sum_k s^-(\mu, \varphi_k)$
$arphi_1\equivarphi_2$	$\begin{cases} s^{-}(\mu,\varphi_{1}) \cdot s(\mu,\varphi_{2}) + \\ s(\mu,\varphi_{1}) \cdot s^{-}(\mu,\varphi_{2}) \end{cases}$	$\begin{cases} (s(\mu,\varphi_1) + s^-(\mu,\varphi_2)) \cdot \\ (s^-(\mu,\varphi_1) + s(\mu,\varphi_2)) \end{cases}$

 $s(\mu, \varphi)$ computes $score(CNF(\mu, \varphi))$ directly in linear time.

© Roberto Sebastiani

DPLL Heuristics & Optimizations

Techniques to achieve efficiency in DPLL

- Preprocessing: preprocess the input formula so that to make it easier to solve
- Look-ahead: exploit information about the remaining search space
 - unit propagation
 - pure literal
 - forward checking (splitting heuristics)
- Look-back: exploit information about search which has already taken place
 - Backjumping
 - Learning

Variants of DPLL

DPLL is a family of algorithms.

- different splitting heuristics
- preprocessing: (subsumption, 2-simplification)
- backjumping
- learning

. . .

- random restart
- horn relaxation

ICT Graduate School, Trento, May-June 2002

Splitting heuristics - Choose_literal()

- Split is the source of non-determinism for DPLL
- Choose_literal() critical for efficiency
- many split heuristics conceived in literature.

Some example heuristics

- MOM heuristics: pick the literal occurring most often in the minimal size clauses
 ⇒fast and simple
- Jeroslow-Wang: choose the literal with maximum

 $score(l) := \sum_{l \in c \& c \in \varphi} 2^{-|c|}$

 \Longrightarrow estimates *l*'s contribution to the satisfiability of φ

- Satz: selects a candidate set of literals, perform unit propagation, chooses the one leading to smaller clause set
 - \implies maximizes teh effects of unit propagation

Some preprocessing techniques

- Sorting+subsumption:

Some preprocessing techniques (cont.)

- 2-simplifying [9]: exploiting binary clauses.
- Repeat:
 - 1. build the implication graph induced by literals
 - 2. detect strongly connected cycles
 - \implies equivalence classes of literals
 - 3. perform substitutions
 - 4. perform unit and pure.

Until no more simplification possible.

Very suseful for many application domains.

Conflict-directed backtracking (backjumping) [7, 50]

- Idea: when a branch fails,
 - reveal the sub-assignment causing the failure (conflict set)
 - 2. backtrack to the most recent branching point in the conflict set
- a conflict set is constructed from the conflict clause by tracking backwards the unit-implications causing it and by keeping the branching literals.
- when a branching point fails, a conflict set is obtained by resolving the two conflict sets of the two branches.
- may avoid lots of redundant search.

 $\neg A_1 \lor A_2$ $\neg A_1 \lor A_3 \lor A_9$ $\neg A_2 \lor \neg A_3 \lor A_4$ $\neg A_4 \lor A_5 \lor A_{10}$ $\neg A_4 \lor A_6 \lor A_{11}$ $\neg A_5 \lor \neg A_6$ $A_1 \vee A_7 \vee \neg A_{12}$ $A_1 \vee A_8$ $\neg A_7 \lor \neg A_8 \lor \neg A_{13}$

. . .

 $\neg A_1 \lor A_2$ $\neg A_1 \lor A_3 \lor A_9$ $\neg A_2 \lor \neg A_3 \lor A_4$ $\neg A_4 \lor A_5 \lor A_{10}$ $\neg A_4 \lor A_6 \lor A_{11}$ $\neg A_5 \lor \neg A_6$ $A_1 \vee A_7 \vee \neg A_{12}$ $A_1 \vee A_8$ $\neg A_7 \lor \neg A_8 \lor \neg A_{13}$. . .

 $\{..., \neg A_9, \neg A_{10}, \neg A_{11}, A_{12}, A_{13}, ...\}$ (initial assignment)

 $\neg A_1 \lor A_2$ $\neg A_1 \lor A_3 \lor A_9$ $\neg A_2 \lor \neg A_3 \lor A_4$ $\neg A_4 \lor A_5 \lor A_{10}$ $\neg A_4 \lor A_6 \lor A_{11}$ $\neg A_5 \lor \neg A_6$ $A_1 \lor A_7 \lor \neg A_{12}$ $true \Longrightarrow removed$ $A_1 \vee A_8$ $true \Longrightarrow removed$ $\neg A_7 \lor \neg A_8 \lor \neg A_{13}$. . .

 $\{..., \neg A_9, \neg A_{10}, \neg A_{11}, A_{12}, A_{13}, ..., A_1\}$ (branch on A_1)

$ eg A_1 \lor A_2$	$true \Longrightarrow removed$
$ eg A_1 \lor A_3 \lor A_9$	$true \Longrightarrow removed$
$\neg A_2 \lor \neg A_3 \lor A_4$	
$\neg A_4 \lor A_5 \lor \mathbf{A_{10}}$	
$\neg A_4 \lor A_6 \lor \mathbf{A_{11}}$	
$\neg A_5 \lor \neg A_6$	
$A_1 \lor A_7 \lor \neg A_{12}$	$true \Longrightarrow removed$
$A_1 \lor A_8$	$true \Longrightarrow removed$
$\neg A_7 \lor \neg A_8 \lor \neg A_{13}$	
•••	

$$\{..., \neg A_9, \neg A_{10}, \neg A_{11}, A_{12}, A_{13}, ..., A_1, A_2, A_3\}$$
 (unit A_2, A_3)

$ eg A_1 \lor A_2$	$true \Longrightarrow removed$	
$ eg A_1 \lor A_3 \lor A_9$	$true \Longrightarrow removed$	
$\neg A_2 \lor \neg A_3 \lor A_4$	$true \Longrightarrow removed$	
$ eg A_4 \lor A_5 \lor A_{10}$		
$ eg A_4 \lor A_6 \lor A_{11}$		
$\neg A_5 \lor \neg A_6$		
$A_1 \lor A_7 \lor \neg A_{12}$	$true \Longrightarrow removed$	
$A_1 \lor A_8$	$true \Longrightarrow removed$	
$\neg A_7 \lor \neg A_8 \lor \neg A_{13}$		
•••		

$$\{..., \neg A_9, \neg A_{10}, \neg A_{11}, A_{12}, A_{13}, ..., A_1, A_2, A_3, A_4\}$$
 (unit A_4)

$ eg A_1 \lor A_2$	$true \implies removed$
$ eg A_1 \lor A_3 \lor A_9$	$true \implies removed$
$ eg A_2 \lor eg A_3 \lor A_4$	$true \implies removed$
$ eg A_4 \lor A_5 \lor A_{10}$	$true \implies removed$
$ eg A_4 \lor A_6 \lor A_{11}$	$true \implies removed$
$ eg A_5 \lor eg A_6$	$false \implies conflict$
$A_1 \lor A_7 \lor \neg A_{12}$	$true \implies removed$
$A_1 \lor A_8$	$true \implies removed$
$\neg A_7 \lor \neg A_8 \lor \neg A_1$	3

 $\{..., \neg A_9, \neg A_{10}, \neg A_{11}, A_{12}, A_{13}, ..., A_1, A_2, A_3, A_4, A_5, A_6\}$ (unit A_5, A_6)

. . .

$ eg A_1 \lor A_2$	$true \implies removed$
$ eg A_1 \lor A_3 \lor A_9$	$true \implies removed$
$\neg A_2 \lor \neg A_3 \lor A_4$	$true \implies removed$
$ eg A_4 \lor A_5 \lor A_{10}$	$true \implies removed$
$ eg A_4 \lor A_6 \lor A_{11}$	$true \implies removed$
$\neg A_5 \lor \neg A_6$	$false \implies conflict$
$A_1 \lor A_7 \lor \neg A_{12}$	$true \implies removed$
$A_1 \lor A_8$	$true \implies removed$
$\neg A_7 \lor \neg A_8 \lor \neg A_{13}$	3

 \implies Conflict set: { $\neg A_9$, $\neg A_{10}$, $\neg A_{11}$, A_1 } \implies backtrack to A_1

. . .

 $\neg A_1 \lor A_2$ $true \implies removed$ $\neg A_1 \lor A_3 \lor A_9 \qquad true \implies removed$ $\neg A_2 \lor \neg A_3 \lor A_4$ $\neg A_4 \lor A_5 \lor A_{10}$ $\neg A_4 \lor A_6 \lor A_{11}$ $\neg A_5 \lor \neg A_6$ $A_1 \vee A_7 \vee \neg A_{12}$ $A_1 \lor A_8$ $\neg A_7 \lor \neg A_8 \lor \neg A_{13}$. . .

 $\{..., \neg A_9, \neg A_{10}, \neg A_{11}, A_{12}, A_{13}, ..., \neg A_1\}$ (branch on $\neg A_1$)

$ eg A_1 \lor A_2$	$true \implies removed$
$ eg A_1 \lor A_3 \lor A_9$	$true \implies removed$
$\neg A_2 \vee \neg A_3 \vee A_4$	
$\neg A_4 \lor A_5 \lor \frac{A_{10}}{}$	
$\neg A_4 \lor A_6 \lor \underline{A_{11}}$	
$\neg A_5 \lor \neg A_6$	
$A_1 \lor A_7 \lor \neg A_{12}$	$true \implies removed$
$A_1 \lor A_8$	$true \implies removed$
$\neg A_7 \lor \neg A_8 \lor \neg A_{13}$	$false \implies conflict$
•••	

$$\{..., \neg A_9, \neg A_{10}, \neg A_{11}, A_{12}, A_{13}, ..., \neg A_1, A_7, A_8\}$$

(unit A_7, A_8)

$\neg A_1 \lor A_2$	$true \implies$	removed
$ eg A_1 \lor A_3 \lor A_9$	$true \implies$	removed
$\neg A_2 \vee \neg A_3 \vee A_4$		
$\neg A_4 \lor A_5 \lor \frac{A_{10}}{A_{10}}$		
$\neg A_4 \lor A_6 \lor \frac{A_{11}}{A_{11}}$		
$\neg A_5 \vee \neg A_6$		
$A_1 \lor A_7 \lor \neg A_{12}$	$true \implies$	removed
$A_1 \lor A_8$	$true \implies$	removed
$\neg A_7 \lor \neg A_8 \lor \neg A_{13}$	$false \implies$	conflict
•••		

$$\Longrightarrow$$
 conflict set: $\{A_{12}, A_{13}, \neg A_1\}$.

$\neg A_1 \lor A_2$	$true \implies$	removed
$ eg A_1 \lor A_3 \lor A_9$	$true \implies$	removed
$\neg A_2 \vee \neg A_3 \vee A_4$		
$\neg A_4 \lor A_5 \lor \frac{A_{10}}{}$		
$\neg A_4 \lor A_6 \lor \frac{A_{11}}{A_{11}}$		
$\neg A_5 \lor \neg A_6$		
$A_1 \lor A_7 \lor \neg A_{12}$	$true \implies$	removed
$A_1 \lor A_8$	$true \implies$	removed
$\neg A_7 \lor \neg A_8 \lor \neg A_{13}$	$false \implies$	conflict
•••		

 $\implies \text{conflict set: } \{A_{12}, A_{13}, \neg A_1\} \dots \lor \{\neg A_9, \neg A_{10}, \neg A_{11}, A_1\} \\ \implies \{\neg A_9, \neg A_{10}, \neg A_{11}, A_{12}, A_{13}\} \implies \text{backtrack to } A_{13}.$

Learning [7, 50]

- Idea: When a conflict set *C* is revealed, then $\neg C$ can be added to the clause set \Rightarrow DPLL will never again generate an assignment containing *C*.
- May avoid a lot of redundant search.
- Problem: may cause a blowup in space
 ⇒techniques to control learning and to drop learned clauses when necessary

Learning – example (cont.)

$ eg A_1 \lor A_2$	$true \implies$	removed
$ eg A_1 \lor A_3 \lor A_9$	$true \implies$	removed
$\neg A_2 \lor \neg A_3 \lor A_4$	$true \implies$	removed
$ eg A_4 \lor A_5 \lor A_{10}$	$true \implies$	removed
$ eg A_4 \lor A_6 \lor A_{11}$	$true \implies$	removed
$\neg A_5 \lor \neg A_6$	$false \implies$	conflict
$A_1 \lor A_7 \lor \neg A_{12}$	$true \implies$	removed
$A_1 \lor A_8$	$true \implies$	removed
$\neg A_7 \lor \neg A_8 \lor \neg A_{13}$;	

 $A_{9} \lor A_{10} \lor A_{11} \lor \neg A_{1} \quad learned \ clause$ $\implies \textbf{Conflict set:} \{\neg A_{9}, \neg A_{10}, \neg A_{11}, A_{1}\}$ $\implies \textbf{learn} \ A_{9} \lor A_{10} \lor A_{11} \lor \neg A_{1}$

ICT Graduate School, Trento, May-June 2002

. . .
© Roberto Sebastiani

SOME APPLICATIONS

ICT Graduate School, Trento, May-June 2002

Many applications of SAT

- Many successful applications of SAT:
 - Boolean circuits
 - (Bounded) Planning
 - (Bounded) Model Checking
 - Cryptography
 - Scheduling
 - ...
- All NP-complete problem can be (polynomially) converted to SAT.
- Key issue: find an efficient encoding.

Application #1: (Bounded) Planning

The problem [37, 36]

- Problem Given a set of action operators OP, (a representation of) an initial state I and goal state G, and a bound n, find a sequence of operator applications $o_1, ..., o_n$, leading from the initial state to the goal state.
- Idea: Encode it into satisfiability problem of a boolean formula φ

Example

Move(b, s, d)

 $\begin{array}{lll} Precond: & Block(b) \land Clear(b) \land On(b,s) \land \\ & (Clear(d) \lor Table(d)) \land \\ & b \neq s \land b \neq d \land s \neq d \\ \\ Effect: & Clear(s) \land \neg On(b,s) \land \\ & On(b,d) \land \neg Clear(d) \end{array}$

Encoding

- Initial states:

$$On_0(A, B), On_0(B, C), On_0(C, T), Clear_0(A).$$

- Goal states:

$$On_{2n}(C,B) \wedge On_{2n}(B,A) \wedge On_{2n}(A,T).$$

Action preconditions and effects:

$$Move_{t}(A, B, C) \rightarrow \\Clear_{t-1}(A) \wedge On_{t-1}(A, B) \wedge Clear_{t-1}(C) \wedge \\Clear_{t+1}(B) \wedge \neg On_{t+1}(A, B) \wedge \\On_{t+1}(A, C) \wedge \neg Clear_{t+1}(C).$$

Encoding: Frame axioms

- Classic

$$\begin{split} Move_t(A,B,T) \wedge Clear_{t-1}(C) & \to Clear_{t+1}(C), \\ Move_t(A,B,T) \wedge \neg Clear_{t-1}(C) \to \neg Clear_{t+1}(C). \end{split}$$

"At least one action" axiom:

$$\bigvee \qquad Move_t(b,s,d).$$

$$b,s,d \in \{A,B,C,T\}$$

$$b \neq s, b \neq d, s \neq d, b \neq T$$

Explanatory

 $\neg Clear_{t+1}(C) \land Clear_{t-1}(C) \rightarrow \\ Move_t(A, B, C) \lor Move_t(A, T, C) \lor Move_t(B, A, C) \lor Move_t(B, T, C).$

Planning strategy

- Sequential for each pair of actions α and β , add axioms of the form $\neg \alpha_t \lor \neg \beta_t$ for each odd time step. For example, we will have:

$$\neg Move_t(A, B, C) \lor \neg Move_t(A, B, T).$$

- parallel for each pair of actions α and β , add axioms of the form $\neg \alpha_t \lor \neg \beta_t$ for each odd time step if α effects contradict β preconditions. For example, we will have

 $\neg Move_t(B, T, A) \lor \neg Move_t(A, B, C).$

Application #2: Bounded Model Checking

Bounded Planning

- Incomplete technique
- very efficient: competitive with state-of-the-art planners
- lots of enhancements [37, 36, 19, 25]

The problem [8]

Ingredients:

- A system written as a Kripke structure $M := \langle S, I, T, \mathcal{L} \rangle$
 - S: set of states
 - I: set of initial states
 - T: transition relation
 - *L*: labeling function
- A property *f* written as a LTL formula:
 - a propositional literal p
 - *h* ∧ *g*, *h* ∨ *g*, X*g*, G*g*, F*g*,*h*U*g* and *h*R*g*,
 X, G, F, U, R "next", "globally", "eventually", "until" and "releases"
- an integer k (bound)

The problem (cont.)

Problem:

Is there an execution path of M of length k satisfying the temporal property f?:

 $M \models_k \mathbf{E} f$

The encoding

Equivalent to the satisfiability problem of a boolean formula $[[M, f]]_k$ defined as follows:

$$\begin{split} & [[M,f]]_{k} \quad := \quad [[M]]_{k} \wedge \ [[f]]_{k} & (1) \\ & [[M]]_{k} \quad := \quad I(s_{0}) \wedge \bigwedge_{i=0}^{k-1} T(s_{i},s_{i+1}), & (2) \\ & [[f]]_{k} \quad := \quad (\neg \bigvee_{l=0}^{k} T(s_{k},s_{l}) \wedge \ [[f]]_{k}^{0}) \vee \bigvee_{l=0}^{k} (T(s_{k},s_{l}) \wedge \ _{l}[[f]]_{k}^{0})(3) \end{split}$$

The encoding of $[[f]]_k^i$ and ${}_l[[f]]_k^i$

f	$[[f]]_k^i$	$\iota[[f]]^i_k$
p	p_{i}	p_i
$\neg p$	$\neg p_i$	$ eg p_i$
$h \wedge g$	$[[h]]^i_k \wedge \ [[g]]^i_k$	${}_l \llbracket h \rrbracket ^i_k \wedge {}_l \llbracket g \rrbracket ^i_k$
$h \lor g$	$[[h]]^i_k ee ~~ [[g]]^i_k$	$_l[[h]]^i_k ee \ _l[[g]]^i_k$
Xa	$\left[\left[g ight] ight] _{k}^{i+1} if \; i < k$	$_l [[g]]_k^{i+1} if \; i < k$
<i>xy</i>	\perp otherwise.	$_{l}[[g]]_{k}^{l} \hspace{0.5cm} otherwise.$
$\mathbf{G}g$	\perp	$igwedge_{j=min(i,l)}^k \iota[[g]]_k^j$
$\mathbf{F}g$	$igee_{j=i}^k ~ [[g]]_k^j$	$\bigvee_{j=min(i,l)}^k \iota[[g]]_k^j$
hU g	$igee_{j=i}^k \left(\ [[g]]_k^j \wedge igwedge_{n=i}^{j-1} \ [[h]]_k^n ight)$	$igee_{j=i}^k \left(\ {}_l[[g]]_k^j \wedge igwedge_{n=i}^{j-1} \ {}_l[[h]]_k^n ight) ee$
		$igvee_{j=l}^{i-1}\left(\ {}_{l}[[g]]_{k}^{j}\wedgeigwedge_{n=i}^{k} \ {}_{l}[[h]]_{k}^{n}\wedgeigwedge_{n=l}^{j-1} \ {}_{l}[[h]]_{k}^{n} ight)$
$h\mathbf{R}g$	$igee_{j=i}^k \left(\ [[h]]_k^j \wedge igwedge_{n=i}^j \ \ [[g]]_k^n ight)$	$\bigwedge_{j=min(i,l)}^{k} \iota[[g]]_{k}^{j} \lor$
		$igvee_{j=i}^k \left(\ {}_l [[h]]_k^j \wedge igwedge_{n=i}^j \ {}_l [[g]]_k^n ight) ee$
		$igee_{j=l}^{i-1}\left(\iota[[h]]_k^j\wedgeigwedge_{n=i}^k \iota[[g]]_k^n\wedgeigwedge_{n=l}^j \iota[[g]]_k^n ight)$

Example: $\mathbf{F}p$ (reachability)

- $f := \mathbf{F}p$: is there a reachable state in which p holds? - $[[M, f]]_k$ is:

$$I(s_0) \wedge \bigwedge_{i=0}^{k-1} T(s_i, s_{i+1}) \wedge \bigvee_{j=0}^k p_j$$

Example: Gp

- $f := \mathbf{G}p$: is there a path where p holds forever? - $[[M, f]]_k$ is:

$$I(s_0) \wedge \bigwedge_{i=0}^{k-1} T(s_i, s_{i+1}) \wedge \bigvee_{l=0}^k T(s_k, s_l) \wedge \bigwedge_{j=0}^k p_j$$

Example: $\mathbf{GF}q \wedge \mathbf{F}p$ (fair reachability)

- $f := \mathbf{GF}q \wedge \mathbf{F}p$: is there a reachable state in which p holds provided that q holds infinitely often?
- $[[M, f]]_k$ is:

$$I(s_0) \wedge \bigwedge_{i=0}^{k-1} T(s_i, s_{i+1}) \wedge \bigvee_{j=0}^k p_j \wedge \bigvee_{l=0}^k \left(T(s_k, s_l) \wedge \bigvee_{j=l}^k q \right)$$

Bounded Model Checking

- incomplete technique
- very efficient for some problems
- lots of enhancements [8, 1, 49, 53, 13]

SAT: Propositional Satisfiability and Beyond

© Roberto Sebastiani

PART 2:

BEYOND PROPOSITIONAL SATISFIABILITY

Extending SAT procedures to more expressive domains [30, 46, 5]

Two viewpoints:

- (SAT experts) Export the efficiency of SAT techniques to other domains
- (Logicians) Provide a new "SAT based" general framework from which to build efficient decision procedures (alternative, e.g., to semantic tableaux)

© Roberto Sebastiani

FORMAL FRAMEWORK

ICT Graduate School, Trento, May-June 2002

Ingredients

- A logic language \mathcal{L} extending boolean logic:
 - Language-specific atomic expression are formulas (e.g., P(x), □(A₁ ∨ □A₂), (x - y ≥ 6),
 ∃ CHILDREN (MALE ∧ TEEN))
 - if φ_1 and φ_2 formulas, then $\neg \varphi_1$, $\varphi_1 \land \varphi_2$, $\varphi_1 \lor \varphi_2$, $\varphi_1 \rightarrow \varphi_2$, $\varphi_1 \leftrightarrow \varphi_2$ are formulas.
 - Nothing else is a formula (e.g., no external quantifiers!)

Ingredients (cont.)

- A semantic for \mathcal{L} extending standard boolean one:
 - $\begin{array}{lll} M \models \psi, (\psi \ atomic) & \Longleftrightarrow & \left[\text{definition specific for } \mathcal{L} \right] \\ M \models \neg \phi & \Longleftrightarrow & M \not\models \phi \\ M \models \varphi_1 \land \varphi_2 & \Longleftrightarrow & M \models \varphi_1 \ \text{and} M \models \varphi_2 \\ M \models \varphi_1 \lor \varphi_2 & \Longleftrightarrow & M \models \varphi_1 \ \text{or} M \models \varphi_2 \\ M \models \varphi_1 \rightarrow \varphi_2 & \Leftrightarrow & \mathbf{if} M \models \varphi_1 \ \mathbf{then} M \models \varphi_2 \\ M \models \varphi_1 \leftrightarrow \varphi_2 & \Longleftrightarrow & M \models \varphi_1 \ \mathbf{or} M \models \varphi_2 \end{array}$

Ingredients (cont.)

- A language-specific procedure \mathcal{L} -Solve able to decide the satisfiability of lists of atomic expressions and their negations

E.g.:

- FO-SOLVE($\{P(x, a), P(b, y)\}$) \Longrightarrow Sat
- K-SOLVE({ $\Box(A_1 \rightarrow A_2), \Box(A_1), \neg \Box(A_2)$ }) \Longrightarrow Unsat
- MATH-SOLVE({ $(x-y \le 3), (y-z \le 4), \neg (x-z \le 8)$ }) ⇒ Unsat
- \mathcal{ALC} -Solve $\left\{ \left\{ \begin{array}{l} \forall \text{ Children } (\neg \text{Male } \lor \text{teen}), \\ \forall \text{ Children } (\text{Male}), \\ \exists \text{ Children } (\neg \text{teen}) \end{array} \right\} \right\}$

nsat ICT Graduate School, Trento, May-June 2002

Definitions: atoms, literals

- An atom is every formula in \mathcal{L} whose main connective is not a boolean operator.
- A literal is either an atom (a positive literal) or its negation (a negative literal).
- Examples:

$$P(x), \neg \forall x.Q(x, f(a))$$

$$\Box(A_1 \lor \Box A_2), \neg \Box(A_2 \to \Box(A_3 \lor A_4))$$

$$(x - y \ge 6), \neg (z - y < 2),$$

$$\exists \text{ CHILDREN (MALE \land \text{TEEN}), \neg \forall \text{ PARENT (OLD)}$$

 $-Atoms(\varphi)$: the set of top-level atoms in φ .

Definitions: total truth assignment

– We call a total truth assignment μ for φ a total function

 $\mu: Atoms(\varphi) \longmapsto \{\top, \bot\}$

– We represent a total truth assignment μ either as a set of literals

$$\mu = \{\alpha_1, \ldots, \alpha_N, \neg \beta_1, \ldots, \neg \beta_M, A_1, \ldots, A_R, \neg A_{R+1}, \ldots, \neg A_S\},\$$

or as a boolean formula

$$\mu = \bigwedge_{i} \alpha_{i} \wedge \bigwedge_{j} \neg \beta_{j} \wedge \bigwedge_{k=1}^{R} A_{k} \wedge \bigwedge_{h=R+1}^{S} \neg A_{h}$$

Definitions: partial truth assignment

– We call a partial truth assignment μ for φ a partial function

$\mu:Atoms(\varphi)\longmapsto\{\top,\bot\}$

- Partial truth assignments can be represented as sets of literals or as boolean functions, as before.
- A partial truth assignment μ for φ is a subset of a total truth assignment for φ .
- If $\mu_2 \subseteq \mu_1$, then we say that μ_1 extends μ_2 and that μ_2 subsumes μ_1 .
- a conflict set for μ_1 is an inconsistent subset $\mu_2 \subseteq \mu_1$ s.t. no strict subset of μ_2 is inconsistent.

ICT Graduate School, Trento, May-June 2002

Definitions: total and partial truth assignment (cont.)

Remark:

- Syntactically identical instances of the same atom in φ are always assigned identical truth values. E.g., ... $\wedge ((t_1 \ge t_2) \lor A_1) \land ((t_1 \ge t_2) \lor A_2) \land ...$
- Equivalent but syntactically different atoms in φ may be assigned different truth values.
 - E.g., ... $\wedge ((t_1 \ge t_2) \lor A_1) \land ((t_2 \le t_1) \lor A_2) \land ...$

Definition: propositional satisfiability in $\boldsymbol{\mathcal{L}}$

A truth assignment μ for φ propositionally satisfies φ in \mathcal{L} , written $\mu \models_p \varphi$, iff it makes φ evaluate to \top :

- $\mu \models_{p} \varphi_{1}, \ \varphi_{1} \in Atoms(\varphi) \iff \varphi_{1} \in \mu;$ $\mu \models_{p} \neg \varphi_{1} \qquad \Longleftrightarrow \qquad \mu \not\models_{p} \varphi_{1};$ $\mu \models_{p} \varphi_{1} \land \varphi_{2} \qquad \Longleftrightarrow \qquad \mu \models_{p} \varphi_{1} \ and \ \mu \models_{p} \varphi_{2}.$...
- A partial assignment μ propositionally satisfies φ iff all total assignments extending μ propositionally satisfy φ .

Definition: propositional satisfiability in \mathcal{L} (cont)

- Intuition: If φ is seen as a boolean combination of its atoms, \models_p is standard propositional satisfiability.
- Atoms seen as (recognizable) blackboxes
- The definitions of $\varphi_1 \models_p \varphi_2$, $\models_p \varphi$ is straightforward.
- \models_p stronger than \models : if $\varphi_1 \models_p \varphi_2$, then $\varphi_1 \models \varphi_2$, but not vice versa.

E.g., $(v_1 \le v_2) \land (v_2 \le v_3) \models (v_1 \le v_3)$, but $(v_1 \le v_2) \land (v_2 \le v_3) \not\models_p (v_1 \le v_3)$.

Satisfiability and propositional satisfiability in $\ensuremath{\mathcal{L}}$

Proposition: φ is satisfiable in \mathcal{L} iff there exists a truth assignment μ for φ s.t.

- $\mu \models_p \varphi$, and
- μ is satisfiable in \mathcal{L} .

- Search decomposed into two orthogonal components:
 - Purely propositional: search for a truth assignments μ propositionally satisfying φ
 - Purely domain-dependent: verify the satisfiability in \mathcal{L} of μ .

Example

$$\begin{split} \varphi &= \{\neg (2v_2 - v_3 > 2) \lor A_1\} \land \\ \{\neg A_2 \lor (2v_1 - 4v_5 > 3)\} \land \\ \{(3v_1 - 2v_2 \le 3) \lor A_2\} \land \\ \{\neg (2v_3 + v_4 \ge 5) \lor \neg (3v_1 - v_3 \le 6) \lor \neg A_1\} \land \\ \{A_1 \lor (3v_1 - 2v_2 \le 3)\} \land \\ \{(v_1 - v_5 \le 1) \lor (v_5 = 5 - 3v_4) \lor \neg A_1\} \land \\ \{A_1 \lor (v_3 = 3v_5 + 4) \lor A_2\}. \end{split}$$

 $\mu = \{\neg (2v_2 - v_3 > 2), \neg A_2, (3v_1 - 2v_2 \le 3), (v_1 - v_5 \le 1), \neg (3v_1 - v_3 \le 6), (v_3 = 3v_5 + 4)\}.$ $\mu' = \{\neg (2v_2 - v_3 > 2), \neg A_2, \neg A_1, (3v_1 - 2v_2 \le 3), (v_3 = 3v_5 + 4)\}.$

 $-\mu \models_p \varphi$, but is unsatisfiable, as contains conflict sets:

$$\{(3v_1 - 2v_2 \le 3), \neg (2v_2 - v_3 > 2), \neg (3v_1 - v_3 \le 6)\}$$

$$\{(v_1 - v_5 \le 1), (v_3 = 3v_5 + 4), \neg (3v_1 - v_3 \le 6)\}$$

$$-\mu'\models_p \varphi$$
, and is satisfiable $(v_1, v_2, v_3 := 0, v_5 := -4/3)$.

ICT Graduate School, Trento, May-June 2002

Complete collection of assignments

A collection $\mathcal{M} = \{\mu_1, \dots, \mu_n\}$ of (possibly partial) assignments propositionally satisfying φ is complete iff

$$\models_p \varphi \leftrightarrow \bigvee_j \mu_j. \tag{4}$$

- for every total assignment η s.t. $\eta \models_p \varphi$, there is $\mu_i \in \mathcal{M}$ s.t. $\mu_i \subseteq \eta$. $\Longrightarrow \mathcal{M}$ represents all assignments.
- \mathcal{M} "compact" representation of the whole set of total assignments propositionally satisfying φ .

Complete collection of assignments and satisfiability in $\ensuremath{\mathcal{L}}$

Proposition. Let $\mathcal{M} = \{\mu_1, \dots, \mu_n\}$ be a complete collection of truth assignments propositionally satisfying φ . Then φ is satisfiable if and only if μ_j is satisfiable for some $\mu_j \in \mathcal{M}$.

- Search decomposed into two orthogonal components:
 - Purely propositional: generate (in a lazy way) a complete collection *M* = {μ₁,...,μ_n} of truth assignments propositionally satisfying φ;
 - Purely domain-dependent: check one by one the satisfiability in \mathcal{L} of the μ_i 's.

Redundancy of complete collection of assignments

A complete collection $\mathcal{M} = \{\mu_1, \dots, \mu_n\}$ of assignments propositionally satisfying φ is

- strongly non redundant iff, for every $\mu_i, \mu_j \in \mathcal{M}$, $(\mu_i \wedge \mu_j)$ is propositionally unsatisfiable,
- non redundant iff, for every $\mu_j \in \mathcal{M}$, $\mathcal{M} \setminus \{\mu_j\}$ is no more complete,
- redundant otherwise.

- If \mathcal{M} is redundant, then $\mu_j \supseteq \mu_i$ for some $\mu_i, \mu_j \in \mathcal{M}$: $\models_p \varphi \leftrightarrow \bigvee_{i \neq j} \mu_i \implies \models_p \bigvee_i \mu_i \leftrightarrow \bigvee_{i \neq j} \mu_i \implies$ $\bigvee_i \mu_i \models_p \bigvee_{i \neq j} \mu_i \implies \mu_j \models_p \bigvee_{i \neq j} \mu_i \implies$ $\mu_j \models_p \mu_i \text{ for some } i \implies \mu_j \supseteq \mu_i$
- If $\mathcal M$ is strongly non redundant, then $\mathcal M$ is non redundant:

$$\mu_{j} \wedge \mu_{i} \text{ propositionally inconsistent } \Longrightarrow$$
$$\mu_{j} \models_{p} \neg \mu_{i} \qquad \Longrightarrow$$
$$\mathcal{M} \text{ nonredundant}$$
Redundancy: example

Let $\varphi := (\alpha \lor \beta \lor \gamma) \land (\alpha \lor \beta \lor \neg \gamma), \alpha, \beta, \gamma$ atoms. Then

- 1. $\{\{\alpha, \beta, \gamma\}, \{\alpha, \beta, \neg\gamma\}, \{\alpha, \neg\beta, \gamma\}, \{\alpha, \neg\beta, \neg\gamma\}, \{\neg\alpha, \beta, \gamma\}, \{\neg\alpha, \beta, \gamma, \gamma\}\}$ is the set of all total assignments propositionally satisfying φ ;
- 2. $\{\{\alpha\}, \{\alpha, \beta\}, \{\alpha, \neg\gamma\}, \{\alpha, \beta\}, \{\beta\}, \{\beta, \neg\gamma\}, \{\alpha, \gamma\}, \{\beta, \gamma\}\}$ is complete but redundant;
- 3. $\{\{\alpha\}, \{\beta\}\}\$ is complete, non redundant but not strongly non redundant;
- 4. $\{\{\alpha\}, \{\neg\alpha, \beta\}\}$ is complete and strongly non redundant.

© Roberto Sebastiani

A GENERALIZED SEARCH PROCEDURE

ICT Graduate School, Trento, May-June 2002

Truth assignment enumerator

A truth assignment enumerator is a total function ASSIGN_ENUMERATOR() which takes as input a formula φ in \mathcal{L} and returns a complete collection $\{\mu_1, \ldots, \mu_n\}$ of assignments propositionally satisfying φ .

- A truth assignment enumerator is
 - strongly non-redundant if ASSIGN_ENUMERATOR(φ) is strongly non-redundant, for every φ ,
 - non-redundant if ASSIGN_ENUMERATOR(φ) is non-redundant, for every φ ,
 - redundant otherwise.

Truth assignment enumerator w.r.t. SAT solver

Remark. Notice the difference:

- A SAT solver has to find only one satisfying assignment —or to decide there is none;
- A Truth assignment enumerator has to find a complete collection of satisfying assignments.

A generalized procedure

```
boolean \mathcal{L}-SAT (formula \varphi, assignment & \mu, model & M)

do

\mu := \operatorname{NEXT}_ASSIGNMENT(\varphi) /* next in {\mu_1, ..., \mu_n} */

if (\mu \neq Null)

satifiable := \mathcal{L}-SOLVE(\mu, M);

while ((satifiable = False) and (\mu \neq Null))

if (satifiable \neq False)

then return True; /* a satisf. assignment found */

else return False; /* no satisf. assignment found */
```

$\mathcal{L}\text{-}\mathrm{SAT}$

- \mathcal{L} -SAT(φ) terminating, correct and complete \iff \mathcal{L} -SOLVE(μ) terminating, correct and complete.
- $\mathcal{L}\text{-}\mathrm{SAT}$ depends on $\mathcal L$ only for $\mathcal L\text{-}\mathrm{SOLVE}$
- \mathcal{L} -SAT requires polynomial space iff
 - \mathcal{L} -SOLVE requires polynomial space and
 - Assign_Enumerator is lazy

Mandatory requirements for an assignment enumerator

An assignment enumerator must always:

- (Termination) terminate
- (Correctness) generate assignments propositionally satisfying φ
- (Completeness) generate complete set of assignments

Mandatory requirements for \mathcal{L} -SOLVE()

- $\mathcal{L} ext{-SOLVE}$ () must always:
- (Termination) terminate
- (Correctness & completeness) return True if μ is satisfiable in \mathcal{L} , False otherwise

Efficiency requirements for an assignent enumerator

To achieve the maximum efficiency, an assignent enumerator should:

- (Laziness) generate the assignments one-at-a-time.
- (Polynomial Space) require only polynomial space
- (Strong Non-redundancy) be strongly non-redundant
- (Time efficiency) be fast
- [(Symbiosis with *L*-SOLVE) be able to tale benefit from failure & success information provided by *L*-SOLVE (e.g., conflict sets, inferred assignments)]

Benefits of (strongly) non-redundant generators

- Non-redundant enumerators avoid generating partial assignments whose unsatisfiability is a propositional consequence of those already generated.
- Strongly non-redundant enumerators avoid generating partial assignments covering areas of the search space which are covered by already-generated ones.
- Strong non-redundancy provides a logical warrant that an already generated assignment will never be generated again.

 \implies no extra control required to avoid redundancy.

Efficiency requirements for \mathcal{L} -SOLVE()

To achieve the maximum efficiency, \mathcal{L} -SOLVE() should:

- (Time efficiency) be fast
- (Polynomial Space) require only polynomial space
- [(Symbiosis with Assign_Enumerator) be able to produce failure & success information (e.g., conflict sets, inferred assignments)]
- [(Incrementality) be incremental: \mathcal{L} -SOLVE($\mu_1 \cup \mu_2$) reuses computation of \mathcal{L} -SOLVE(μ_1)]

© Roberto Sebastiani

EXTENDING EXISTING SAT PROCEDURES

General ideas

Existing SAT procedures are natural candidates to be used as assignment enumerators.

- Atoms labelled by propositional atoms
- Slight modifications
 (backtrack when assignment found)
- Completeness to be verified!
 (E.g., DPLL with Pure literal)
- Candidates: OBDDs, Semantic Tableaux, DPLL

OBDDs

- In an OBDDs, the set of paths from the root to (1) represent a complete collection of assignments
- Some may be inconsistent in ${\cal L}$
- Reduction: [12, 41]
 - 1. inconsistent paths from the root to internal nodes are detected
 - 2. they are redirected to the (0) node
 - 3. the resulting OBDD is simplified.

© Roberto Sebastiani

OBDD

OBDD of $(\alpha \lor \beta \lor \gamma) \land (\alpha \lor \beta \lor \neg \gamma)$.

OBDD reduction: example

Reduced OBDD of $(\alpha \lor \beta \lor \gamma) \land (\alpha \lor \beta \lor \neg \gamma)$, $\alpha := (x - y \le 4), \beta := (x - y \le 2).$

OBDD: summary

- strongly non-redundant
- time-efficient
- factor sub-graphs
- require exponential memory
- non lazy
- [allow for early pruning]
- [do not allow for backjumping or learning]

Generalized semantic tableaux

- General rules = propositional rules + \mathcal{L} -specific rules

$$\left\{ \begin{array}{ccc} \frac{\varphi_{1} \wedge \varphi_{2}}{\varphi_{1}} & \frac{\neg(\varphi_{1} \vee \varphi_{2})}{\neg\varphi_{1}} & \frac{\neg(\varphi_{1} \rightarrow \varphi_{2})}{\varphi_{1}} \\ \varphi_{2} & \neg\varphi_{2} & \neg\varphi_{2} \\ \frac{\neg\neg\varphi}{\varphi} & & \\ \frac{\varphi_{1} \vee \varphi_{2}}{\varphi_{1}} & \frac{\neg(\varphi_{1} \wedge \varphi_{2})}{\neg\varphi_{1}} & \frac{\varphi_{1} \rightarrow \varphi_{2}}{\neg\varphi_{1}} \end{array} \right\} \cup \left\{ \begin{array}{c} \mathcal{L}\text{-specific} \\ \text{Rules} \end{array} \right\}$$

Widely used by logicians

Generalized tableau algorithm

```
function \mathcal{L}-Tableau(\Gamma)
       if A_i \in \Gamma and \neg A_i \in \Gamma
                                                                                              /* branch closed */
                then return False;
       if (\varphi_1 \land \varphi_2) \in \Gamma
                                                                                               /* \land-elimination */
                then return L-Tableau(\Gamma \cup \{\varphi_1, \varphi_2\} \setminus \{(\varphi_1 \land \varphi_2)\});
       if (\neg \neg \varphi_1) \in \Gamma
                                                                                            /* ¬¬-elimination */
                then return L-Tableau(\Gamma \cup \{\varphi_1\} \setminus \{(\neg \neg \varphi_1)\});
                                                                                                /* \vee-elimination */
       if (\varphi_1 \lor \varphi_2) \in \Gamma
                then return L-Tableau(\Gamma \cup \{\varphi_1\} \setminus \{(\varphi_1 \lor \varphi_2)\}) or
                                             \mathcal{L}-Tableau(\Gamma \cup \{\varphi_2\} \setminus \{(\varphi_1 \lor \varphi_2)\});
```

return (\mathcal{L} -SOLVE(Γ)= satisfiable); /* branch expanded */

General tableaux: example

Tableau search graph for $(\alpha \lor \beta \lor \gamma) \land (\alpha \lor \beta \lor \neg \gamma)$.

Generalized tableaux: problems

Two main problems [15, 29, 30]

- syntactic branching
 - branch on disjunctions
 - possible many duplicate or subsumed branches
 >redundant
 - duplicates search (both propositional and domain-dependent)
- no constraint violation detection
 - incapable to detect when current branches violate a constraint
 - \implies lots of redundant propositional search.

Syntactic branching: example

Tableau search graph for $(\alpha \lor \neg \beta) \land (\alpha \lor \beta) \land (\neg \alpha \lor \neg \beta)$.

© Roberto Sebastiani

Detecting constraints violations: example

Tableau search graph for $(\alpha \lor \phi_1) \land (\beta \lor \phi_2) \land \phi_3 \land (\neg \alpha \lor \neg \beta)$

Generalized tableaux: summary

- lazy
- require polynomial memory
- redundant
- time-inefficient
- [allow backjumping]
- [do not allow learning]

Remark.

The word "Tableau" is a bit overloaded in literature. Some existing (and rather efficient) systems, like FacT and DLP [34], call themselves "Tableau" procedures, although they use a DPLL-like technique to perform boolean reasoning. Same discourse holds for the boolean system KE [15] and its derived systems.

Generalized DPLL

- General rules = propositional rules + \mathcal{L} -specific rules

$$\left\{\begin{array}{c} \frac{\varphi_{1} \wedge (l) \wedge \varphi_{2}}{(\varphi_{1} \wedge \varphi_{2})[l|\top]} (Unit) \\ \frac{\varphi}{\varphi[l|\top] \quad \varphi[l|\bot]} (split) \end{array}\right\} \cup \left\{\begin{array}{c} \mathcal{L}\text{-specific} \\ \text{Rules} \end{array}\right\}$$

 No Pure Literal Rule: Pure literal causes incomplete assignment sets!

Pure literal and Generalized DPLL: Example

$$\varphi = ((x - y \le 1) \lor A_1) \land$$
$$((y - z \le 2) \lor A_2) \land$$
$$(\neg (x - z \le 4) \lor A_2) \land$$
$$(\neg A_2 \lor A_3) \land$$
$$(\neg A_2 \lor \neg A_3)$$

- A satisfiable assignment propositionally satisfying φ is:
 - $\mu = \{A_1, \neg A_2, (y z \le 2), \neg (x z \le 4)\}$
- No satisfiable assignment propositionally satisfying φ contains $(x y \le 1)$
- Pure literal may assign $(x y \le 1) := \top$ as first step ⇒return unsatisfiable.

Generalized DPLL algorithm

function
$$\mathcal{L}$$
-DPLL(φ, μ)
if $\varphi = \top$ /* base */
then return (\mathcal{L} -SOLVE(μ)=satisfiable);
if $\varphi = \bot$ /* backtrack */
then return False;
if {a unit clause (l) occurs in φ } /* unit */
then return \mathcal{L} -DPLL($assign(l, \varphi), \mu \land l$);
 $l := choose-literal(\varphi)$; /* split */
return \mathcal{L} -DPLL($assign(l, \varphi), \mu \land l$) or
 \mathcal{L} -DPLL($assign(\neg l, \varphi), \mu \land \neg l$);

© Roberto Sebastiani

General DPLL: example

DPLL search graph

DPLL search graph for $(\alpha \lor \beta \lor \gamma) \land (\alpha \lor \beta \lor \neg \gamma)$.

Generalized DPLL vs. generalized tableaux

Two big advantages: [15, 29, 30]

- semantic vs. syntactic branching
 - branch on truth values
 - no duplicate or subsumed branches
 - ⇒strongly non redundant
 - no search duplicates
- constraint violation detection
 - backtracks as soon as the current branch violates a constraint

 \implies no redundant propositional search.

Semantic branching: example

Tableau search graph for $(\alpha \lor \neg \beta) \land (\alpha \lor \beta) \land (\neg \alpha \lor \neg \beta)$.

© Roberto Sebastiani

Detecting constraints violations: example

DPLL search graph for $(\alpha \lor \phi_1) \land (\beta \lor \phi_2) \land \phi_3 \land (\neg \alpha \lor \neg \beta)$

Generalized DPLL: summary

- lazy
- require polynomial memory
- strongly non redundant
- time-efficient
- [allow backjumping and learning]

© Roberto Sebastiani

Optimizations

Possible Improvements

- Preprocessing atoms [28, 34, 5]
- Static learning [2]
- Early pruning [28, 12, 4]
- Enhanced Early pruning [4]
- Backjumping [34, 54]
- Memoizing [34, 24]
- Learning [34, 54]
- Triggering [54, 4]

Preprocessing atoms [28, 34, 5]

Source of inefficiency: semantically equivalent but syntactically different atoms are not recognized to be identical [resp. one the negation of the other] \Longrightarrow they may be assigned different [resp. identical] truth values.

Solution: rewrite trivially equivalent atoms into one.
Preprocessing atoms (cont.)

- Sorting: $(v_1 + v_2 \le v_3 + 1), (v_2 + v_1 \le v_3 + 1), (v_1 + v_2 1 \le v_3) \Longrightarrow (v_1 + v_2 v_3 \le 1));$
- Rewriting dual operators:

$$(v_1 < v_2), (v_1 \ge v_2) \Longrightarrow (v_1 < v_2), \neg (v_1 < v_2)$$

- Exploiting associativity:

$$(v_1 + (v_2 + v_3) = 1), ((v_1 + v_2) + v_3) = 1) \Longrightarrow$$

 $(v_1 + v_2 + v_3 = 1);$

- Factoring $(v_1 + 2.0v_2 \le 4.0)$, $(-2.0v_1 4.0v_2 \ge -8.0)$, ⇒ $(0.25v_1 + 0.5v_2 \le 1.0)$;
- Exploiting properties of \mathcal{L} : $(v_1 \leq 3), (v_1 < 4) \Longrightarrow (v_1 \leq 3) \text{ if } v_1 \in \mathbb{Z};$

Preprocessing atoms: summary

- Very efficient with DPLL
- Presumably very efficient with OBDDs
- Scarcely efficient with semantic tableaux

Static learning [2]

- Rationale: Many literals are mutually exclusive (e.g., $(x y < 3), \neg(x y < 5)$)
- Preprocessing step: detect these literals and add binary clauses to the input formula:
 (e.g., ¬(x − y < 3) ∨ (x − y < 5))
- (with DPLL) assignments including both literals are never generated.
- requires $O(|\varphi|^2)$ steps.

Static learning (cont.)

- Very efficient with DPLL
- Possibly very efficient with OBDDs (?)
- Completely ineffective with semantic tableaux

Early pruning [28, 12, 4]

- rationale: if an assignment μ' is unsatisfiable, then all its extensions are unsatisfiable.
- the unsatisfiability of μ' detected during its construction,

 \implies avoids checking the satisfiability of all the up to $2^{|Atoms(\varphi)| - |\mu'|}$ assignments extending μ' .

 Introduce a satisfiability test on incomplete assignments just before every branching step:

if Likely-Unsatisfiable(μ)/* early pruning */if (\mathcal{L} -SOLVE(μ) = False)then return False;

DPLL+Early pruning

Early pruning: example

$$\begin{split} \varphi &= \{\neg (2v_2 - v_3 > 2) \lor A_1\} \land \\ \{\neg A_2 \lor (2v_1 - 4v_5 > 3)\} \land \\ \{(3v_1 - 2v_2 \le 3) \lor A_2\} \land \\ \{\neg (2v_3 + v_4 \ge 5) \lor \neg (3v_1 - v_3 \le 6) \lor \neg A_1\} \land \\ \{A_1 \lor (3v_1 - 2v_2 \le 3)\} \land \\ \{(v_1 - v_5 \le 1) \lor (v_5 = 5 - 3v_4) \lor \neg A_1\} \land \\ \{A_1 \lor (v_3 = 3v_5 + 4) \lor A_2\}. \end{split}$$

- Suppose it is built the intermediate assignment:

 $\mu' = \neg (2v_2 - v_3 > 2) \land \neg A_2 \land (3v_1 - 2v_2 \le 3) \land \neg (3v_1 - v_3 \le 6).$

- If \mathcal{L} -SOLVE is invoked on μ' , it returns *False*, and \mathcal{L} -DPLL backtracks without exploring any extension of μ' .

Early pruning: drawback

- Reduces drastically the search
- Drawback: possibly lots of useless calls to \mathcal{L} -SOLVE \implies to be used with care when \mathcal{L} -SOLVE calls recursively \mathcal{L} -SAT (e.g., with modal logics)
- Roughly speaking, worth doing when each branch saves at least
- Possible solutions:
 - introduce a selective heuristic Likely-unsatisfiable
 - use incremental versions of \mathcal{L} -SOLVE one split.

Early pruning: Likely-unsatisfiable

- Rationale: if no literal which may likely cause conflict with the previous assignment has been added since last call, return false.
- Examples: return false if they are added only
 - boolean literals
 - disequalities $(x y \neq 3)$
 - atoms introducing new variables $(x z \neq 3)$
 - ...

Early pruning: incrementality of \mathcal{L} -SOLVE

- With early pruning, lots of incremental calls to \mathcal{L} -SOLVE:
 - \mathcal{L} -SOLVE(μ) \implies satisfiable \mathcal{L} -SOLVE($\mu \cup \mu'$) \implies satisfiable
 - \mathcal{L} -SOLVE $(\mu \cup \mu' \cup \mu'') \implies$ satisfiable
- \mathcal{L} -SOLVE incremental: \mathcal{L} -SOLVE($\mu_1 \cup \mu_2$) reuses computation of \mathcal{L} -SOLVE(μ_1) without restarting from scratch \Longrightarrow lots of computation saved
- requires saving the status of $\mathcal{L}\text{-}\mathrm{SOLVE}$

. . .

Early pruning: summary

- Very efficient with DPLL & OBDDs
- Possibly very efficient with semantic tableaux (?)
- In some cases may introduce big overhead (e.g., modal logics)
- Benefits if \mathcal{L} -SOLVE is incremental

Enhanced Early Pruning [4]

- In early pruning, \mathcal{L} -SOLVE is not effective if it returns "satisfiable".
- \mathcal{L} -SOLVE(μ) may be able to derive deterministically a sub-assignment η s.t. $\mu \models \eta$, and return it.
- The literals in η are then unit-propagated away.

Enhanced Early Pruning: Examples

(We assume that all the following literals occur in φ .)

- If $(v_1 v_2 \le 4) \in \mu$ and $(v_1 v_2 \le 6) \notin \mu$, then *L*-SOLVE can derive $(v_1 - v_2 \le 6)$ from μ .
- If $(v_1 v_3 > 2), (v_2 = v_3) \in \mu$ and $(v_1 v_2 > 2) \notin \mu$, then \mathcal{L} -SOLVEcan derive $(v_1 - v_2 > 2)$ from μ .

Enhanced Early Pruning: summary

- Further improves efficiency with DPLL
- Presumably scarcely effective with semantic tableaux
- Effective with OBDDs?
- Requires a sophisticated $\mathcal{L}\text{-}\mathrm{SOLVE}$

Backjumping (driven by \mathcal{L} -SOLVE) [34, 54]

- Similar to SAT backjumping
- Rationale: same as for early pruning
- Idea: when a branch is found unsatisfiable in \mathcal{L} ,
 - 1. \mathcal{L} -SOLVE returns the conflict set causing the failure
 - 2. \mathcal{L} -SAT backtracks to the most recent branching point in the conflict set

Backjumping: Example

$$\begin{split} \varphi &= \{\neg (2v_2 - v_3 > 2) \lor A_1\} \land \\ \{\neg A_2 \lor (2v_1 - 4v_5 > 3)\} \land \\ \{(3v_1 - 2v_2 \le 3) \lor A_2\} \land \\ \{\neg (2v_3 + v_4 \ge 5) \lor \neg (3v_1 - v_3 \le 6) \lor \neg A_1\} \land \\ \{A_1 \lor (3v_1 - 2v_2 \le 3)\} \land \\ \{(v_1 - v_5 \le 1) \lor (v_5 = 5 - 3v_4) \lor \neg A_1\} \land \\ \{A_1 \lor (v_3 = 3v_5 + 4) \lor A_2\}. \end{split}$$

 $\mu = \{\neg (2v_2 - v_3 > 2), \neg A_2, (3v_1 - 2v_2 \le 3), (v_1 - v_5 \le 1), \neg (3v_1 - v_3 \le 6), (v_3 = 3v_5 + 4)\}.$

 $- \mathcal{L}$ -SOLVE(μ) returns *false* with the conflict set:

$$\{(3v_1 - 2v_2 \le 3), \neg (2v_2 - v_3 > 2), \neg (3v_1 - v_3 \le 6)\}$$

- \mathcal{L} -SAT can jump back directly to the branching point $\neg(3v_1 - v_3 \le 6)$, without branching on $(v_3 = 3v_5 + 4)$.

Backjumping vs. Early Pruning

- Backjumping requires no extra calls to \mathcal{L} -SOLVE
- Effectiveness depends on the conflict set C, i.e., on how recent the most recent branching point in C is.
- Example: no pruning effect with the conflict set:

$$\{(v_1 - v_5 \le 1), (v_3 = 3v_5 + 4), \neg (3v_1 - v_3 \le 6)\}$$

- Same pruning effect as with Early Pruning only with the best conflict set
- More effective than Early Pruning only when the overhead compensates the pruning effect (e.g., modal logics with high depths).

Backjumping: summary

- Very efficient with DPLL
- Never applied to OBDDs
- Very efficient with semantic tableaux
- Alternative to but less effective than early pruning.
- No significant overhead
- \mathcal{L} -SOLVE must be able to detect conflict sets.

Memoizing [34, 24]

- Idea 1:

- When a conflict set *C* is revealed, then *C* can be cached into an ad hoc data structure
- \mathcal{L} -SOLVE(μ) checks first if (any subset of) μ is cached. If yes, returns unsatisfiable.
- Idea 2:
 - When a satisfying (sub)-assignment μ' is found, then μ' can be cached into an ad hoc data structure
 - \mathcal{L} -SOLVE(μ) checks first if (any superset of) μ is cached. If yes, returns satisfiable.

Memoizing (cont.)

- Can dramatically prune search.
- May cause a blowup in memory.
- Applicable also to semantic tableaux.
- Idea 1 subsumed by learning.

Learning (driven by \mathcal{L} -SOLVE) [34, 54]

- Similar to SAT learning
- Idea: When a conflict set *C* is revealed, then $\neg C$ can be added to the clause set \Rightarrow DPLL will never again generate an assignment containing *C*.
- May avoid a lot of redundant search.
- Problem: may cause a blowup in space
 ⇒techniques to control learning and to drop learned clauses when necessary

Learning: example

- \mathcal{L} -SOLVE returns the conflict set: $\{(3v_1 - 2v_2 \le 3), \neg(2v_2 - v_3 > 2), \neg(3v_1 - v_3 \le 6)\}$ - it is added the clause

 $\neg (3v_1 - 2v_2 \le 3) \lor (2v_2 - v_3 > 2) \lor (3v_1 - v_3 \le 6)$

- Prunes up to 2^{N-3} assignments

 \implies the smaller the conflict set, the better.

Learning: summary

- Very efficient with DPLL
- Never applied to OBDDs
- Completely ineffective with semantic tableaux
- May cause memory blowup
- \mathcal{L} -SOLVE must be able to detect conflict sets.

Triggering [54, 4]

Proposition Let *C* be a non-boolean atom occurring only positively [resp. negatively] in φ . Let \mathcal{M} be a complete set of assignments for φ , and let

 $\mathcal{M}' := \{\mu_j / \neg C\} | \mu_j \in \mathcal{M}\} \quad [resp. \{\mu_j / C\} | \mu_j \in \mathcal{M}\}].$

Then φ is satisfiable if and only if there exist a satisfiable $\eta' \in \mathcal{M}'$ s.t. $\eta' \models_p \varphi$.

Triggering (cont.)

- If we have non-boolean atoms occurring only positively [negatively] in φ , we can drop any negative [positive] occurrence of them from the assignment to be checked by \mathcal{L} -SOLVE
- Particularly useful when we deal with equality atoms (e.g., $(v_1 - v_2 = 3.2)$), as handling negative equalities like $(v_1 - v_2 \neq 3.2)$ forces splitting: $(v_1 - v_2 > 3.2) \lor (v_1 - v_2 < 3.2)$.

Application Fields

- Modal Logics
- Description Logics
- Temporal Logics
- Boolean+Mathematical reasoning (Temporal reasoning, Resource Planning, Verification of Timed Systems, Verification of systems with arithmetical operators, verification of hybrid systems)
- QBF

. . .

© Roberto Sebastiani

CASE STUDY: MODAL LOGIC(S)

ICT Graduate School, Trento, May-June 2002

Satisfiability in Modal logics

- Propositional logics enhanced with modal operators \Box_i , K_i , etc.
- Used to represent complex concepts like knowledge, necessity/possibility, etc.
- Based on Kripke's possible worlds semantics [39]
- Very hard to decide [32, 31]
 (typically PSPACE-complete or worse)
- Strictly related to Description Logics [44] (ex: $K(m) \iff ALC$)
- Various fields of application: AI, formal verification, knowledge bases, etc.

Syntax

Given a non-empty set of primitive propositions $\mathcal{A} = \{A_1, A_2, ...\}$ and a set of m modal operators $\mathcal{B} = \{\Box_1, ..., \Box_m\}$, the modal language \mathcal{L} is the least set of formulas containing \mathcal{A} , closed under the set of propositional connectives $\{\neg, \land, \lor, \rightarrow, \leftrightarrow\}$ and the set of modal operators in \mathcal{B} .

- depth(φ) is the maximum number of nested modal operators in φ .
- " $\Box_i \varphi$ " can be interpreted as "Agent *i* knows φ "

Semantics

- A Kripke structure for \mathcal{L} is a tuple $M = \langle \mathcal{U}, \pi, \mathcal{R}_1, \dots, \mathcal{R}_m \rangle$, where
 - \mathcal{U} is a set of states $u_1, u_2, ...$
 - π is a function $\pi : \mathcal{A} \times \mathcal{U} \longmapsto \{\top, \bot\},$
 - each \mathcal{R}_r is a binary relation on the states of \mathcal{U} .

Semantics (cont)

Given M, u s.t. $u \in \mathcal{U}$, $M, u \models \varphi$ is defined as follows:

- $M, u \models A_i, A_i \in \mathcal{A} \qquad \Longleftrightarrow \qquad \pi(A_i, u) = \top;$ $M, u \models \neg \varphi_1 \qquad \Longleftrightarrow \qquad M, u \not\models \varphi_1;$ $M, u \models \varphi_1 \land \varphi_2 \qquad \Longleftrightarrow \qquad M, u \models \varphi_1 \text{ and } M, u \models \varphi_2;$ $M, u \models \varphi_1 \lor \varphi_2 \qquad \Longleftrightarrow \qquad M, u \models \varphi_1 \text{ or } M, u \models \varphi_2.$

. . .

Semantics (cont)

The (normal) modal logics vary with the properties of \mathcal{R}_r :

Axiom	Property of ${\cal R}$	Description
В	symmetric	$\forall \ u \ v \ \mathcal{R}(u,v) \Longrightarrow \mathcal{R}(v,u)$
D	serial	$orall u \ \exists \ v \ \mathcal{R}(u,v)$
Т	reflexive	$orall u \mathcal{R}(u,u)$
4	transitive	$\forall u v w \mathcal{R}(u,v) \; e \; \mathcal{R}(v,w) \Longrightarrow \mathcal{R}(u,w)$
5	euclidean	$\forall \ u \ v \ w \ \mathcal{R}(u,v) \ e \ \mathcal{R}(u,w) \Longrightarrow \mathcal{R}(v,w)$

SAT: Propositional Satisfiability and Beyond

© Roberto Sebastiani

Normal Modal Logic	Properties of \mathcal{R}_r
K	—
KB	symmetric
KD	serial
KT = KDT (T)	reflexive
K4	transitive
K5	euclidean
KBD	symmetric and serial
KBT = KBDT (B)	symmetric and reflexive
KB4 = KB5 = KB45	symmetric and transitive
KD4	serial and transitive
KD5	serial and euclidean
KT4 = KDT4 (S4)	reflexive and transitive
KT5 = KBD4 = KBD5 = KBT4 = KBT5 = KDT5 =	reflexive, transitive and symmetric
KT45 = KBD45 = KBT45 = KDT45 = KBDT4 =	(equivalence)
KBDT5 = KBDT45 (S5)	
K45	transitive and euclidean
KD45	serial, transitive and euclidean

Axiomatic framework

– Basic Axioms:

$$I. \quad \alpha \to (\beta \to \alpha),$$

$$II. \quad (\alpha \to (\beta \to \gamma)) \to ((\alpha \to \beta) \to (\alpha \to \gamma)),$$

$$III. \quad (\neg \alpha \to \beta) \to ((\neg \alpha \to \neg \beta) \to \alpha),$$

$$K: \quad \Box_r \alpha \to (\Box_r (\alpha \to \beta) \to \Box_r \beta)$$

- Specific Axioms:

- $B. \quad \alpha \to \Box_r \neg \Box_r \neg \alpha,$
- $D. \quad \Box_r \alpha \to \neg \Box_r \neg \alpha,$
- $T. \quad \Box_r \alpha \to \alpha,$
- 4. $\Box_r \alpha \rightarrow \Box_r \Box_r \alpha$,
- 5. $\neg \Box_r \alpha \rightarrow \Box_r \neg \Box_r \alpha$.

Axiomatic framework (cont.)

- Inference rules:

$$\frac{\alpha \quad \alpha \to \beta}{\beta} \text{ (modus ponens)},$$
$$\frac{\alpha}{\Box_r \alpha} \text{ (necessitation)}.$$

 $- \text{ Correctness \& completeness:} \\ \varphi \text{ is valid } \Longleftrightarrow \varphi \text{ can be deduced}$

Tableaux for modal K(m)/ACL [20]

- Rules = tableau rules + K(m)-specific rules

DPLL for K(m)/*ALC*: K-SAT [28, 29]

- Rules = DPLL rules + K(m)-specific rules

$$\left\{ \begin{array}{c} \frac{\varphi_{1} \wedge (l) \wedge \varphi_{2}}{(\varphi_{1} \wedge \varphi_{2})[l|\top]} & (Unit) \\ \frac{\varphi}{\varphi[l|\top]} & \varphi[l|\bot] \end{array} \right\} \cup \left\{ \begin{array}{c} \frac{\Box_{r}\alpha_{1}, ..., \Box_{r}\alpha_{N}, \neg \Box_{r}\beta_{j}}{\alpha_{1}, ..., \alpha_{N}, \neg \beta_{j}} \end{array} \right\}$$

The K-SAT algorithm [28, 29]

function K-SAT(φ) return K-DPLL(φ , \top);

function K-D	$\mathrm{PLL}(arphi,\mu)$		
$\mathbf{if} \; \varphi = \top$		/* base	*/
\mathbf{the}	n return K-SOLVE(μ);		
$\mathbf{if} \; \varphi = \bot$		/* backtra	ack */
\mathbf{the}	n return <i>False</i> ;		
if {a unit	clause (l) occurs in φ }	/* unit	*/
the	n return K-DPLL($assign(l, \varphi), \mu \wedge l$);		
if Likely-	/* early p	runing */	
if n	ot K-SOLVE(μ)		
	then return <i>False;</i>		
l := choos	se-literal(φ);	/* split	*/
return	$ ext{K-DPLL}(assign(l, arphi), \mu \wedge l)$ or		
	K-DPLL $(assign(\neg l, \varphi), \mu \land \neg l);$		

The K-SAT algorithm (cont.)

function K-SOLVE($\bigwedge_{i} \Box_{1} \alpha_{1i} \land \bigwedge_{j} \neg \Box_{1} \beta_{1j} \land \ldots \land \bigwedge_{i} \Box_{m} \alpha_{mi} \land \bigwedge_{j} \neg \Box_{m} \beta_{mj} \land \gamma$) for each box index r do if not K-SOLVE_{restr}($\bigwedge_{i} \Box_{r} \alpha_{ri} \land \bigwedge_{j} \neg \Box_{r} \beta_{rj}$) then return False; return True;

function K-SOLVE_{restr} ($\bigwedge_i \Box_r \alpha_{ri} \land \bigwedge_j \neg \Box_r \beta_{rj}$) for each conjunct " $\neg \Box_r \beta_{rj}$ " do if not K-SAT($\bigwedge_i \alpha_{ri} \land \neg \beta_{rj}$) then return False; return True;

K-SAT: Example

$$\begin{split} \varphi &= \left\{ \neg \Box_{1} (\neg A_{3} \lor \neg A_{1} \lor A_{2}) \lor A_{1} \lor A_{5} \right\} \land \\ \left\{ \neg A_{2} \lor \neg A_{5} \lor \Box_{2} (\neg A_{2} \lor \neg A_{4} \lor \neg A_{3}) \right\} \land \\ \left\{ A_{1} \lor \Box_{2} (\neg A_{4} \lor A_{5} \lor A_{2}) \lor A_{2} \right\} \land \\ \left\{ \neg \Box_{2} (A_{4} \lor \neg A_{3} \lor A_{1}) \lor \neg \Box_{1} (A_{4} \lor \neg A_{2} \lor A_{3}) \lor \neg A_{5} \right\} \land \\ \left\{ \neg A_{3} \lor A_{1} \lor \Box_{2} (\neg A_{4} \lor A_{5} \lor A_{2}) \right\} \land \\ \left\{ \Box_{1} (\neg A_{5} \lor A_{4} \lor A_{3}) \lor \Box_{1} (\neg A_{1} \lor A_{4} \lor A_{3}) \lor \neg A_{1} \right\} \land \\ \left\{ A_{1} \lor \Box_{1} (\neg A_{2} \lor A_{1} \lor A_{4}) \lor A_{2} \right\} \end{split}$$

\Downarrow K-SOLVE()

 $\mu = \Box_1(\neg A_5 \lor A_4 \lor A_3) \land \qquad \Box_1(\neg A_2 \lor A_1 \lor A_4) \land \qquad [\bigwedge_i \Box_1 \alpha_{1i}]$ $\neg \Box_1(\neg A_3 \lor \neg A_1 \lor A_2) \land \qquad \neg \Box_1(A_4 \lor \neg A_2 \lor A_3) \land \qquad [\bigwedge_j \neg \Box_1 \beta_{1j}]$ $\Box_2(\neg A_4 \lor A_5 \lor A_2) \land \qquad [\bigwedge_i \Box_2 \alpha_{2i}]$

 $\neg A_2$. ICT Graduate School, Trento, May-June 2002 $|\gamma|$

K-SAT: Example (cont.)

 $\mu = \Box_{1}(\neg A_{5} \lor A_{4} \lor A_{3}) \land \qquad \Box_{1}(\neg A_{2} \lor A_{1} \lor A_{4}) \land \qquad [\bigwedge_{i} \Box_{1}\alpha_{1i}]$ $\neg \Box_{1}(\neg A_{3} \lor \neg A_{1} \lor A_{2}) \land \qquad \neg \Box_{1}(A_{4} \lor \neg A_{2} \lor A_{3}) \land \qquad [\bigwedge_{j} \neg \Box_{1}\beta_{1j}]$ $\Box_{2}(\neg A_{4} \lor A_{5} \lor A_{2}) \land \qquad [\bigwedge_{i} \Box_{2}\alpha_{2i}]$ $\neg A_{2}.$ $[\gamma]$

\Downarrow K-SOLVE_{restr}()

$$\mu^{1} = \Box_{1}(\neg A_{5} \lor A_{4} \lor A_{3}) \land \qquad \Box_{1}(\neg A_{2} \lor A_{1} \lor A_{4}) \land \qquad [\bigwedge_{i} \Box_{1}\alpha_{1i}]$$

$$\neg \Box_{1}(\neg A_{3} \lor \neg A_{1} \lor A_{2}) \land \qquad \neg \Box_{1}(A_{4} \lor \neg A_{2} \lor A_{3}) \qquad [\bigwedge_{j} \neg \Box_{1}\beta_{1j}]$$

$$\mu^{2} = \Box_{2}(\neg A_{4} \lor A_{5} \lor A_{2}) \qquad [\bigwedge_{i} \Box_{2}\alpha_{2i}].$$

 \Downarrow K-SAT()

$$\varphi^{11} = (\neg A_5 \lor A_4 \lor A_3) \land (\neg A_2 \lor A_1 \lor A_4) \land A_3 \land A_1 \land \neg A_2,$$

$$\varphi^{12} = (\neg A_5 \lor A_4 \lor A_3) \land (\neg A_2 \lor A_1 \lor A_4) \land \neg A_4 \land A_2 \land \neg A_3$$

ICT Graduate School, Trento, May-June 2002

K-SAT: Example (cont.)

$$\varphi^{11} = (\neg A_5 \lor A_4 \lor A_3) \land (\neg A_2 \lor A_1 \lor A_4) \land A_3 \land A_1 \land \neg A_2,$$

$$\varphi^{12} = (\neg A_5 \lor A_4 \lor A_3) \land (\neg A_2 \lor A_1 \lor A_4) \land \neg A_4 \land A_2 \land \neg A_3$$

$$\Downarrow \text{ K-SOLVE}()$$

$$\mu^{11} = A_3 \wedge A_1 \wedge \neg A_2$$

$$\mu^{12} = \neg A_4 \wedge A_2 \wedge \neg A_3 \wedge \neg A_5 \wedge A_1$$

$$\Downarrow$$

Satisfiable

Example

Resulting Kripke Model:

Search in modal logic:

Two alternating orthogonal components of search:

- Modal search: model spanning
 - jumping among states
 - conjunctive branching
 - up to linearly many successors
- Propositional search: local search
 - reasoning within the single states
 - disjunctive branching
 - up to exponentially many successors

SAT: Propositional Satisfiability and Beyond

Some Systems

- Kris [6], CRACK [10],

- Logics: ALC & many description logics
- Boolean reasoning technique: semantic tableau
- Optimizations: preprocessing
- K-SAT [28, 23]
 - Logics: K(m), ALC
 - Boolean reasoning technique: DPLL
 - Optimizations: preprocessing, early pruning

Some Systems (cont.)

- FaCT & DLP [34]

- Logics: *ALC* & many description logics
- Boolean reasoning technique: DPLL-like
- Optimizations: preprocessing, memoizing, backjumping + optimizations for description logics
- ESAT &*SAT [24]
 - Logics: non-normal modal logics, K(m), ALC
 - Boolean reasoning technique: DPLL
 - Optimizations: preprocessing, early pruning, memoizing, backjumping, learning

Some empirical results [23]

Left: KRIS, TA, K-SAT (LISP), K-SAT (C) median CPU time, 100 samples/point. Right: K-SAT (LISP), K-SAT (C) median number of consistency checks, 100 samples/point. Background: satisfiability percentage.

ICT Graduate School, Trento, May-June 2002

© Roberto Sebastiani

Some empirical results (cont.)

K-SAT (up) versus TA (down) CPU times.

Some empirical results [35]

Formulas of Tableau'98 competition [33]

	branch		d4		dum		grz		lin		path		ph		poly		t4p	
К	p	n	р	n	р	n	р	n	р	n	р	n	р	n	р	n	р	n
leanK 2.0	1	0	1	1	0	0	0	<u>≥</u> 21	<u>≥</u> 21	4	2	0	3	1	2	0	0	0
□KE	13	3	13	3	4	4	3	1	<u>≥</u> 21	2	17	5	4	3	17	0	0	3
LWB 1.0	6	7	8	6	13	19	7	13	11	8	12	10	4	8	8	11	8	7
ТА	9	9	<u>≥</u> 21	18	<u>≥</u> 21	<u>></u> 21	<u>≥</u> 21	<u>≥</u> 21	<u>≥</u> 21	<u>></u> 21	20	20	6	9	16	17	<u>≥</u> 21	19
*SAT 1.2	<u>≥</u> 21	12	<u>≥</u> 21	<u>≥</u> 21	<u>≥</u> 21	<u>></u> 21	8	12	<u>≥</u> 21	<u>></u> 21	<u>≥</u> 21	<u>></u> 21						
Crack 1.0	2	1	2	3	3	<u>></u> 21	1	<u>≥</u> 21	5	2	2	6	2	3	<u>≥</u> 21	<u>></u> 21	1	1
Kris	3	3	8	6	15	<u>></u> 21	13	<u>≥</u> 21	6	9	3	11	4	5	11	<u>></u> 21	7	5
Fact 1.2	6	4	<u>≥</u> 21	8	<u>≥</u> 21	<u>></u> 21	<u>≥</u> 21	<u>≥</u> 21	<u>≥</u> 21	<u>></u> 21	7	6	6	7	<u>≥</u> 21	<u>></u> 21	<u>≥</u> 21	<u>></u> 21
DLP 3.1	19	13	<u>≥</u> 21	<u>≥</u> 21	<u>≥</u> 21	<u>></u> 21	<u>≥</u> 21	<u>≥</u> 21	<u>≥</u> 21	<u>></u> 21	<u>≥</u> 21	<u>></u> 21	7	9	<u>≥</u> 21	<u>></u> 21	<u>≥</u> 21	<u>></u> 21

© Roberto Sebastiani

	45		branch		dum		grz		md		path		ph		poly		t4p	
KT	р	n	р	n	р	n	р	n	р	n	р	n	р	n	р	n	p	n
TA	17	6	13	9	17	9	≥21	<u>≥</u> 21	16	20	<u>≥</u> 21	16	5	12	<u>≥</u> 21	1	11	0
Kris	4	3	3	3	3	14	0	5	3	4	1	13	3	3	2	2	1	7
FaCT 1.2	<u>≥</u> 21	<u>≥</u> 21	6	4	11	<u>></u> 21	<u>≥</u> 21	<u>≥</u> 21	4	5	5	3	6	7	<u>≥</u> 21	7	4	2
DLP 3.1	<u>≥</u> 21	<u>≥</u> 21	19	12	<u>≥</u> 21	<u>≥</u> 21	≥21	<u>≥</u> 21	3	<u>≥</u> 21	16	14	7	<u>≥</u> 21	<u>≥</u> 21	12	<u>≥</u> 21	<u>≥</u> 21

	45		branch		dum		grz		md		path		ph		poly		t4p	
S4	р	n	р	n	р	n	р	n	р	n	р	n	р	n	р	n	р	n
KT4	1	6	2	3	0	17	5	8	<u>≥</u> 21	18	1	2	2	2	2	2	0	3
leanS4 2.0	0	0	0	0	0	0	1	1	2	2	1	0	1	0	1	1	0	0
□KE	8	0	<u>></u> 21	<u>></u> 21	0	<u>></u> 21	6	4	3	3	9	6	4	3	1	<u>></u> 21	3	1
LWB 1.0	3	5	11	7	9	<u>></u> 21	8	7	8	6	8	6	4	8	4	9	9	12
ТА	9	0	<u>≥</u> 21	4	14	0	6	<u>></u> 21	9	10	15	<u>></u> 21	5	5	<u>≥</u> 21	1	11	0
FaCT 1.2	<u>></u> 21	<u>></u> 21	4	4	2	<u>></u> 21	5	4	8	4	2	1	5	4	<u>></u> 21	2	5	3
DLP 3.1	<u>≥</u> 21	<u>≥</u> 21	18	12	<u>≥</u> 21	<u>></u> 21	10	<u>≥</u> 21	3	<u>≥</u> 21	15	15	7	<u>≥</u> 21	<u>≥</u> 21	<u>></u> 21	<u>≥</u> 21	<u>≥</u> 21

SAT techniques for modal logics: summary

- SAT techniques have been successfully applied to modal/description logics
- Many optimizations applicable.
- Currently at the State-of-the-art.

CASE STUDY: (LINEAR) MATHEMATICAL REASONING

MATH-SAT

- Boolean combinations of mathematical propositions on the reals or integers.
- Typically NP-complete
- Various fields of application: temporal reasoning, scheduling, formal verification, resource planning, etc.

Syntax

Let \mathcal{D} be the domain of either reals \mathbb{R} or integers \mathbb{Z} with its set $\mathcal{OP}_{\mathcal{D}}$ of arithmetical operators.

Given a non-empty set of primitive propositions $\mathcal{A} = \{A_1, A_2, \ldots\}$ and a set $\mathcal{E}_{\mathcal{D}}$ of (linear) mathematical expressions over \mathcal{D} , the mathematical language \mathcal{L} is the least set of formulas containing \mathcal{A} and $\mathcal{E}_{\mathcal{D}}$ closed under the set of propositional connectives $\{\neg, \land, \lor, \rightarrow, \leftrightarrow\}$.

Syntax: math-terms and math-formulas

- a constant $c_i \in \mathbb{R}[\mathbb{Z}]$ is a math-term;
- a variable v_i over $\mathbb{R}[\mathbb{Z}]$ is a math-term;
- $c_i \cdot v_j$ is a math-term, $c_i \in \mathbb{R}$ and v_j being a constant and a variable over $\mathbb{R}[\mathbb{Z}]$;
- − if t_1 and t_2 are math-terms, then $-t_1$ and $(t_1 \otimes t_2)$ are math-terms, $\otimes \in \{+, -\}$.
- a boolean proposition A_i over $\mathbb{B} := \{\bot, \top\}$ is a math-formula;
- if t_1 , t_2 are math-terms, then $(t_1 \bowtie t_2)$ is a math-formula, $\bowtie \in \{=, \neq, >, <, \ge, \le\}$;
- if φ_1 , φ_2 are math-formulas, then $\neg \varphi_1$, $(\varphi_1 \land \varphi_2)$, $(\varphi_1 \lor \varphi_2)$, $(\varphi_1 \rightarrow \varphi_2)$ and $(\varphi_1 \leftrightarrow \varphi_2)$, are math-formulas.

Interpretations

Interpretation: a map \mathcal{I} assigning real [integer] and boolean values to math-terms and math-formulas respectively and preserving constants and operators:

- $\mathcal{I}(A_i) \in \{\top, \bot\}, \text{ for every } A_i \in \mathcal{A};$
- $-\mathcal{I}(c_i) = c_i$, for every constant $c_i \in \mathbb{R}$;
- $-\mathcal{I}(v_i) \in \mathbb{R}$, for every variable v_i over \mathbb{R} ;
- $\mathcal{I}(t_1 \otimes t_2) = \mathcal{I}(t_1) \otimes \mathcal{I}(t_2), \text{ for all math-terms } t_1, t_2 \text{ and} \\ \otimes \in \{+, -, \cdot\};$
- $\mathcal{I}(t_1 \bowtie t_2) = \mathcal{I}(t_1) \bowtie \mathcal{I}(t_2), \text{ for all math-terms } t_1, t_2 \text{ and} \\ \bowtie \in \{=, \neq, >, <, \ge, \le\};$
- $-\mathcal{I}(\neg \varphi_1) = \neg \mathcal{I}(\varphi_1)$, for every math-formula φ_1 ;

 $-\mathcal{I}(\varphi_1 \land \varphi_2) = \mathcal{I}(\varphi_1) \land \mathcal{I}(\varphi_2), \text{ for all math-formulas } \varphi_1, \varphi_2.$

ICT Graduate School, Trento, May-June 2002

DPLL for math-formulas [54, 2, 4, 5]

```
function MATH-SAT(\varphi)
return MATH-DPLL(\varphi, \top);
```

function MATH-DPLL(φ, μ) if $\varphi = \top$ */ /* base then return MATH-SOLVE(μ); if $\varphi = \bot$ /* backtrack */ then return False; if {a unit clause (l) occurs in φ } */ /* unit then return MATH-DPLL($assign(l, \varphi), \mu \wedge l$); if Likely-Unsatisfiable(μ) /* early pruning */ if not MATH-SOLVE(μ) then return False; $I := choose-literal(\varphi);$ /* split */ MATH-DPLL $(assign(l, \varphi), \mu \wedge l)$ or return MATH-DPLL($assign(\neg l, \varphi), \mu \land \neg l$);

MATH-SOLVE

MATH-SOLVE: different algorithms for different kinds of math-atoms:

- Difference expressions $(x y \le 3)$: Belman-Ford minimal path algorithm with negative cycle detection
- Equalities (x = y): equivalent class building and rewriting.
- General linear expressions $(3x 4y + 2z \le 5)$: linear programming techniques (Symplex, etc.)
- Disequalities $(x \neq y)$: postpone at the end. Expand $((x < y) \lor (y < x))$ only if indispensable!

Some Systems

- Tsat [2]
 - Logics: disjunctions of difference expressions (positive math-atoms only)
 - Applications: temporal reasoning
 - Boolean reasoning technique: DPLL
 - Optimizations: preprocessing, static learning, forward checking
- LPsat [54]
 - Logics: MATH-SAT (positive math-atoms only)
 - Applications: resource planning
 - Boolean reasoning technique: DPLL
 - Optimizations: preprocessing, backjumping, learning, triggering

Some systems (cont.)

- DDD [41]

- Logics: boolean + difference expressions
- Applications: formal verification of timed systems
- Boolean reasoning technique: OBDD
- Optimizations: preprocessing, early pruning
- Матн-SAT [4]
 - Logics: MATH-SAT
 - Applications: resource planning, formal verification of timed systems
 - Boolean reasoning technique: DPLL
 - Optimizations: preprocessing, enhanced early pruning, backjumping, learning, triggering

SAT techniques for modal logics: summary

- SAT techniques have been successfully applied to MATH-SAT
- Many optimizations applicable.
- Currently competitive with state-of-the-art applications for temporal reasoning, resource planning, formal verification of timed systems.

SAT: Propositional Satisfiability and Beyond References

- [1] P. A. Abdullah, P. Bjesse, and N. Een. Symbolic Reachability Analysis based on SAT-Solvers. In *Sixth Int.nl Conf. on Tools and Algorithms for the Construction and Analysis of Systems (TACAS'00)*, 2000.
- [2] A. Armando, C. Castellini, and E. Giunchiglia. SAT-based procedures for temporal reasoning. In *Proc. European Conference on Planning, CP-99*, 1999.
- [3] A. Armando and E. Giunchiglia. Embedding Complex Decision Procedures inside an Interactive Theorem Prover. Annals of Mathematics and Artificial Intelligence, 8(3–4):475–502, 1993.
- [4] G. Audemard, P. Bertoli, A. Cimatti, A. Korniłowicz, and R. Sebastiani. A SAT Based Approach for Solving Formulas over Boolean and Linear Mathematical Propositions. In *Proc. CADE'2002.*, LNAI. Springer Verlag, February 2002. To appear.
- [5] G. Audemard, P. Bertoli, A. Cimatti, A. Korniłowicz, and R. Sebastiani. Integrating Boolean and Mathematical Solving: Foundations, Basic Algorithms and Requirements. In *Proc. CALCULEMUS'2002.*, LNAI. Springer Verlag, 2002. To appear.
- [6] F. Baader, E. Franconi, B. Hollunder, B. Nebel, and H.J. Profitlich. An Empirical Analysis of Optimization Techniques for Terminological Representation Systems ICT Graduate School, Trento, May-June 2002

or: Making KRIS get a move on. *Applied Artificial Intelligence. Special Issue on Knowledge Base Management*, 4:109–132, 1994.

- [7] R. J. Bayardo, Jr. and R. C. Schrag. Using CSP Look-Back Techniques to Solve Real-World SAT instances. In *American Association for Artificial Intelligence*, pages 203–208. AAAI Press, 1997.
- [8] A. Biere, A. Cimatti, E. M. Clarke, and Yunshan Zhu. Symbolic Model Checking without BDDs. In *Proc. TACAS'99*, pages 193–207, 1999.
- [9] R. Brafman. A simplifier for propositional formulas with many binary clauses. In *Proc. IJCAI01*, 2001.
- [10] P. Bresciani, E. Franconi, and S. Tessaris. Implementing and testing expressive Description Logics: a preliminary report. In *Proc. International Workshop on Description Logics*, Rome, Italy, 1995.
- [11] R. E. Bryant. Graph-Based Algorithms for Boolean Function Manipulation. *IEEE Transactions on Computers*, C-35(8):677–691, August 1986.
- [12] W. Chan, R. J. Anderson, P. Beame, and D. Notkin. Combining constraint solving and symbolic model checking for a class of systems with non-linear constraints. In *Proc. CAV'97*, volume 1254 of *LNCS*, pages 316–327, Haifa, Israel, June 1997. Springer-Verlag.

[13] A. Cimatti, M. Pistore, M. Roveri, and R. Sebastiani. Improving the Encoding of LTL Model Checking into SAT. In *Proc. VMCAI'02*, volume 2294 of *LNCS*. Springer Verlag, january 2002.

- [14] S. A. Cook. The complexity of theorem proving procedures. In *3rd Annual ACM Symposium on the Theory of Computation*, pages 151–158, 1971.
- [15] M. D'Agostino and M. Mondadori. The Taming of the Cut. *Journal of Logic and Computation*, 4(3):285–319, 1994.
- [16] M. Davis, G. Longemann, and D. Loveland. A machine program for theorem proving. *Journal of the ACM*, 5(7), 1962.
- [17] M. Davis and H. Putnam. A computing procedure for quantification theory. *Journal of the ACM*, 7:201–215, 1960.
- [18] T. Boy de la Tour. Minimizing the Number of Clauses by Renaming. In *Proc. of the 10th Conference on Automated Deduction*, pages 558–572. Springer-Verlag, 1990.
- [19] M. Ernst, T. Millstein, and D. Weld. Automatic SAT-compilation of planning problems. In *Proc. IJCAI-97*, 1997.
- [20] M. Fitting. First-Order Modal Tableaux. *Journal of Automated Reasoning*, 4:191–213, 1988.
- [21] M. R. Garey and D. S. Johnson. *Computers and Intractability*. Freeman and Company, New York, 1979.
- [22] I. P. Gent, E. MacIntyre, P. Prosser, and T. Walsh. The constrainedness of search. In *Proceedings of AAAI-96*, pages 246–252, Menlo Park, 1996. AAAI Press / MIT Press.

ICT Graduate School, Trento, May-June 2002

- [23] E. Giunchiglia, F. Giunchiglia, R. Sebastiani, and A. Tacchella. SAT vs. Translation based decision procedures for modal logics: a comparative evaluation. *Journal of Applied Non-Classical Logics*, 10(2):145–172, 2000.
- [24] E. Giunchiglia, F. Giunchiglia, and A. Tacchella. SAT Based Decision Procedures for Classical Modal Logics. Journal of Automated Reasoning. Special Issue: Satisfiability at the start of the year 2000, 2001.
- [25] E. Giunchiglia, A. Massarotto, and R. Sebastiani. Act, and the Rest Will Follow: Exploiting Determinism in Planning as Satisfiability. In *Proc. AAAI'98*, pages 948–953, 1998.
- [26] E. Giunchiglia, M. Narizzano, A. Tacchella, and M. Vardi. Towards an Efficient Library for SAT: a Manifesto. In *Proc. SAT 2001*, Electronics Notes in Discrete Mathematics. Elsevier Science., 2001.
- [27] E. Giunchiglia and R. Sebastiani. Applying the Davis-Putnam procedure to non-clausal formulas. In *Proc. AI*IA'99*, number 1792 in LNAI. Springer Verlag, 1999.
- [28] F. Giunchiglia and R. Sebastiani. Building decision procedures for modal logics from propositional decision procedures - the case study of modal K. In *Proc. CADE'13*, LNAI, New Brunswick, NJ, USA, August 1996. Springer Verlag.
- [29] F. Giunchiglia and R. Sebastiani. A SAT-based decision procedure for ALC. In Proc. of the 5th International Conference on Principles of Knowledge Representation and Reasoning - KR'96, Cambridge, MA, USA, November 1996. ICT Graduate School, Trento, May-June 2002

- [30] F. Giunchiglia and R. Sebastiani. Building decision procedures for modal logics from propositional decision procedures - the case study of modal K(m). *Information and Computation*, 162(1/2), October/November 2000.
- [31] J. Y. Halpern. The effect of bounding the number of primitive propositions and the depth of nesting on the complexity of modal logic. *Artificial Intelligence*, 75(3):361–372, 1995.
- [32] J.Y. Halpern and Y. Moses. A guide to the completeness and complexity for modal logics of knowledge and belief. *Artificial Intelligence*, 54(3):319–379, 1992.
- [33] A. Heuerding and S. Schwendimann. A benchmark method for the propositional modal logics K, KT, S4. Technical Report IAM-96-015, University of Bern, Switzerland, 1996.
- [34] I. Horrocks and P. F. Patel-Schneider. FaCT and DLP. In *Proc. Tableaux'98*, pages 27–30, 1998.
- [35] I. Horrocks, P. F. Patel-Schneider, and R. Sebastiani. An Analysis of Empirical Testing for Modal Decision Procedures. *Logic Journal of the IGPL*, 8(3):293–323, May 2000.
- [36] H. Kautz, D. McAllester, and B. Selman. Encoding Plans in Propositional Logic. In Proceedings International Conference on Knowledge Representation and Reasoning. AAAI Press, 1996.

[37] H. Kautz and B. Selman. Planning as Satisfiability. In *Proc. ECAI-92*, pages 359–363, 1992 ICT Graduate School, Trento, May-June 2002

- [38] S. Kirkpatrick and B. Selman. Critical behaviour in the satisfiability of random boolean expressions. *Science*, 264:1297–1301, 1994.
- [39] S. A. Kripke. Semantical considerations on modal logic. In *Proc. A colloquium on Modal and Many-Valued Logics*, Helsinki, 1962.
- [40] D. Mitchell, B. Selman, and H. Levesque. Hard and Easy Distributions of SAT Problems. In Proc. of the 10th National Conference on Artificial Intelligence, pages 459–465, 1992.
- [41] J. Moeller, J. Lichtenberg, H. R. Andersen, and H. Hulgaard. Fully symbolic model checking of timed systems using difference decision diagrams. In *Proc. Workshop on Symbolic Model Checking (SMC), Federated Logic Conference* (*FLoC*), Trento, Italy, July 1999.
- [42] M. W. Moskewicz, C. F. Madigan, Y. Z., L. Zhang, and S. Malik. Chaff: Engineering an efficient SAT solver. In *Design Automation Conference*, 2001.
- [43] D.A. Plaisted and S. Greenbaum. A Structure-preserving Clause Form Translation. *Journal of Symbolic Computation*, 2:293–304, 1986.
- [44] K. D. Schild. A correspondence theory for terminological logics: preliminary report. In *Proc. of the 12th International Joint Conference on Artificial Intelligence*, pages 466–471, Sydney, Australia, 1991.
- [45] R. Sebastiani. Applying GSAT to Non-Clausal Formulas. Journal of Artificial Intelligence Research, 1:309–314, 1994. Also DIST-Technical Report 94-0018, DIST. University of Genova, Italy.

- [46] R. Sebastiani and A. Villafiorita. SAT-based decision procedures for normal modal logics: a theoretical framework. In *Proc. 6th International Conference on Artificial Intelligence: Methodology, Systems, Applications - AIMSA'98*, number 1480 in LNAI, Sozopol, Bulgaria, September 1998. Springer Verlag.
- [47] B. Selman and H. Kautz. Domain-Independent Extension to GSAT: Solving Large Structured Satisfiability Problems. In *Proc. of the 13th International Joint Conference on Artificial Intelligence*, pages 290–295, 1993.
- [48] B. Selman, H. Levesque., and D. Mitchell. A New Method for Solving Hard Satisfiability Problems. In *Proc. of the 10th National Conference on Artificial Intelligence*, pages 440–446, 1992.
- [49] Ofer Shtrichmann. Tuning SAT checkers for bounded model checking. In *Proc. CAV00*, volume 1855 of *LNCS*, pages 480–494, Berlin, 2000. Springer.
- [50] J. P. M. Silva and K. A. Sakallah. GRASP a new search algorithm for satisfiability. Technical report, University of Michigan, 1996.
- [51] R. M. Smullyan. First-Order Logic. Springer-Verlag, NY, 1968.
- [52] C. P. Williams and T. Hogg. Exploiting the deep structure of constraint problems. *Artificial Intelligence*, 70:73–117, 1994.
- [53] P. F. Williams, A. Biere, E. M. Clarke, and A. Gupta. Combining Decision Diagrams and SAT Procedures for Efficient Symbolic Model Checking. In *Proc. CAV2000*, volume 1855 of *LNCS*, pages 124–138, Berlin, 2000. Springer.

- [54] S. Wolfman and D. Weld. The LPSAT Engine & its Application to Resource Planning. In *Proc. IJCAI*, 1999.
- [55] H. Zhang and M. Stickel. Implementing the Davis-Putnam algorithm by tries. Technical report, University of Iowa, August 1994.

The papers (co)authored by Roberto Sebastiani are availlable at:

http://www.dit.unitn.it/~rseba/publist.html.