
 
On the Relation between SAT and BDDs for Equivalence Checking  

 
                 Sherief Reda1                                Rolf Drechsler2                    Alex Orailoglu1 

 

1Computer Science & Engineering Department         2Institute of Computer Science 
    University of California, San Diego         University of Bremen 

          La Jolla, CA, 92093        28359 Bremen, Germany 
 
 

Abstract 
State-of-the-art verification tools are based on efficient 
operations on Boolean formulas. Traditional manipulation 
techniques are based on Binary Decision Diagrams 
(BDDs) and SAT solvers. In this paper, we study the 
relation between the two procedures and show how the 
number of backtracks obtained in the Davis-Putnam (DP) 
procedure is linked to the number of paths in the BDD. We 
utilize this relation to devise a method that uses BDD 
variable ordering techniques to run the DP procedure. 
Experimental results confirm that the proposed method 
results in a dramatic decrease in the number of backtracks 
and in the time needed to prove the Boolean satisfiability 
problem as well. 
  
1 Introduction 
    Boolean Satisfiability (SAT) has received increased 
attention as a promising technique for Automatic Test 
Pattern Generation (ATPG) and equivalence checking [1], 
[2]. Virtually all SAT techniques rely on the use of the 
Davis-Putnam procedure (DP) [3], [4] to explore the 
search tree. If there is a pattern that differentiates the 
circuits under verification, then DP will eventually find it 
or prove that the SAT formula is unsatisfiable. Numerous 
techniques have been proposed to reduce the search tree. 
Some of these techniques such as iterated global 
implications [2] and recursive learning [5] are applied as a 
preprocessing step, while others are applied during the 
course of the application of the DP procedure. For 
example, clause recording [6] and cache-based 
backtracking [7] are used to avoid conflicts. An alternative 
research trend focuses on identifying variable orderings 
techniques that minimize the number of backtracks 
executed by the DP procedure to find a satisfying 
assignment1. The effectiveness of these techniques is 
sharply limited though in case the formula is unsatisfiable. 
     On the other hand, Binary Decision Diagrams (BDDs), 
as introduced in [9], have been traditionally used to solve 
the equivalence checking problem due to their canonical 
property. However, it is this requirement for canonicity 
that makes BDDs inefficient in representing certain classes 
of functions. For example, integer multipliers have 
displayed exponential memory requirements for any 
variable ordering [10].  

                                                
1 An excellent survey can be found in [8]. 

    There has been increased interest in techniques that 
integrate SAT and BDDs to reduce the time and space 
needed to solve the equivalence checking problem [11], 
[12]. Though it has been noted that SAT and BDDs 
represent the same entity [7], there is little understanding 
of the relation between the two procedures and how the 
techniques of one domain can be utilized in the other. 
    In this paper we attempt to provide an improved 
understanding of the relation between these two 
procedures. We view the equivalence checking problem as 
a search in the decision trees of the two circuits for a path 
that leads to the terminal 1(0) in one but leads to the 0(1) 
terminal in the other. From this perspective, it would be 
desirable to decrease the number of paths, thus reducing 
the number of backtracks and time needed to solve the 
problem. We propose a dynamic variable ordering 
technique to run the DP procedure. The technique is 
geared towards minimization of the number of backtracks 
needed to prove the unsatisfiability of the CNF formula 
that results from proving the equivalence of two circuits. 
We compare our method with the greedy variable ordering 
of TEGUS [2]. Experimental results verify that the 
proposed approach results in a dramatic decrease in the 
number of backtracks and time needed to solve the 
problem.  
    The organization of the paper is as follows. Section 2 
introduces the necessary preliminaries for the material in 
this paper. Section 3 presents the theoretical foundations 
for the relation between the DP procedure and BDDs. 
Section 4 proposes a dynamic BDD-based variable 
ordering technique for the DP procedure. Experimental 
results are given in Section 5, followed up by conclusions 
in Section 6. 
 
2 Preliminaries 
 
2.1 Binary Decision Diagrams 
    A Binary Decision Diagram (BDD) is a rooted directed 
acyclic graph with two terminal nodes that are referred to 
as the 0-terminal and the 1-terminal. Every non-terminal 
node is associated with a primary input variable such that 
it has two outgoing edges called the 0-edge corresponding 
to assigning the variable a false truth value, and the 1-edge 
corresponding to assigning the variable a true truth value. 
   An Ordered Binary Decision Diagram (OBDD) is a BDD 
such that the input variables appear in a fixed order on all 
the paths of the graph, and no variable appears more than 



once in the path. A Reduced Ordered BDD (ROBDD) is an 
OBDD that results from the repeated application of the 
following two rules: 

1. Eliminate all redundant nodes whose edges point to 
the same node. 
2. Share all equivalent sub-graphs. 
 

Figure 1 illustrates an example of an ROBDD where the 
solid edges denote the 1-edges and the dashed edges 
denote the 0-edges. In the following treatment, only 
reduced ordered BDDs are considered and for short we 
denote them as BDDs. 
2.2 The Davis-Putnam Procedure 
   A CNF formula ϕ is a set of clauses where each clause is 
the disjunction of a number of literals where a literal is a 
variable or its negation. Since each logic gate can be 
represented by a number of clauses [1], a CNF formula of 
a logic circuit is the conjunction of the CNF formulas of all 
the gates. A CNF formula is satisfiable if at least one set of 
assignments to the variables of the formula makes it 
evaluate to true.  
   Virtually all SAT solvers use the Davis-Putnam (DP) 
procedure in their core [3], [4] in order to find a satisfying 
assignment for the formula or conversely to prove the 
formula unsatisfiable. The DP procedure performs a 
backtracking depth-first search in the space of all truth 
assignments to find a satisfying assignment for the CNF 
formula. The performance of backtracking is greatly 

improved by employing unit clause propagation: whenever 
a unit clause arises, the variable occurring in that clause is 
assigned the truth-value that satisfies the clause. The 
formula is thereupon simplified which may lead to new 
unit clauses. Figure 2 outlines the DP procedure.  The 
procedure returns true in case the CNF formula is 
satisfiable, false otherwise.  
 
3 On the relation between the DP procedure 
and BDDs 
 
In this section we study the relation between the DP 
procedure and the BDD representation of the same circuit. 
We first formalize the various properties of the CNF 
formulas generated from multi-level combinational logic 
circuits and show how these properties allow a measure of 
flexibility in the search for a satisfying assignment to the 
formula. Furthermore, we prove the relation between the 
number of backtracks obtained using the DP procedure and 
the number of paths in the corresponding BDD. This 
relation allows the calculation of optimal lower bounds for 
the number of backtracks needed to prove the equivalence 
of two equivalent circuits. We start by introducing some 
notation to provide a concise basis for the formalization of 
the derived results. 
    Let ϕ be a CNF formula, and V(ϕ) denote the set of 
variables that ϕ depends on. A clause ci∈ϕ is satisfied if 
there is some assignment to its literals such that the 
disjunction of the literals evaluates to true. The CNF 
formula ϕ is satisfied if there is a truth assignment to V(ϕ) 
such that every clause ci ∈ ϕ is satisfied. 
   Let C-CNF denote the set of CNF formulas generated 
from multi-level combinational logic circuits. Let C ∈ C-
CNF be a multi-level combinational circuit, and let f be the 
underlying Boolean function of C. Since the logic value of 
all the internal and output signals of C can be derived from 
the values of the primary inputs, we consider the support 
of f to be the primary inputs only. We denote the set of 
primary inputs of ϕ by P(ϕ). In addition, we introduce the 
variable χ to reference the primary output of the circuit. 
The relation between ϕ, P(ϕ) and V(ϕ ) is given by the 
next lemma. 
 
Lemma 1 If ϕ ∈ C-CNF, then it is possible to find a set of 
variables P(ϕ) ⊂ V(ϕ) such that ϕ can be satisfied by only 
splitting on the variables of P(ϕ)  in the DP procedure.  
Proof  Since the internal nodes of a multi-level logic 
circuit are functions of the primary inputs, it is possible to 
determine their assignment given some assignment on the 
set of primary input variables, P(ϕ).   
 
Lemma 1 enables a reduction of the search space from one 
in terms of all the variables of the circuit nodes to one in 
terms of the primary inputs. This reduces the backtracking 
in the DP procedure to be only in terms of the primary 
inputs. In a typical run of the DP procedure, a sequence of 
support variables will be assigned truth variables during 

assign(sat_formula ϕ, literal v) 
begin 
   assign v = true in ϕ and simplify ϕ; 
   apply unit clause propagation; 
   if ϕ has an empty clause then return false 
   else return true; 
end 
 
DP(sat_formula ϕ) 
begin 
  choose literal v to split on; 
  if v = NULL then return true; 
  if assign(ϕ, v) then  
      if DP(ϕ) then return true; 
  undo v assignment; 
  if assign(ϕ, ¬v) then  
      if DP(ϕ) then return true; 
  return false; 
end 

Fig 2: The DP procedure 
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        Fig 1: A ROBDD example 



the search of a satisfying assignment to the whole CNF 
formula. This subset of currently assigned primary inputs 
shall be denoted by S, and their truth assignments by As. 
The restricted Boolean function that results from the 
application of As to ϕ shall be denoted by fAs.  
   In order to avoid fruitless searches, the DP procedure 
should avoid assigning truth-values to variables that can 
make no contribution to the satisfiability of the formula. 
This notion is captured by the following definition. 
 
Definition 1 If As is the truth assignment of a set S ⊆ P(ϕ) 
and v ∈ P(ϕ) but v ∉ S then v is said to be redundant under 
As if ∂ fAs /∂v = 0. 
 
Definition 1 simply states that if the restricted Boolean 
function fAs is insensitive to the change in v, then there is 
no point in assigning v a truth value. This notion allows us 
to tailor down the satisfiability of C-CNF formulas as 
given by the following theorem. 
 
Theorem 1 A CNF formula ϕ ∈ C-CNF is satisfied under 
a truth   assignment   As  of  a set S ⊆ P(ϕ) if ∀v∈(P(ϕ)-S): 
 ∂ fAs /∂v = 0. 
Proof If ∀v∈(P(ϕ)-S): ∂f(As)/∂v = 0, then no truth 
assignment to any element that belongs to (P(ϕ)-S) can 
change the function f(As). Since all variables in S are 
assigned truth values under As and (P(ϕ)-S) ∪ S = P(ϕ), 
then it follows from Lemma 1 that ϕ is satisfied.   
 
Theorem 1 proves that if all the remaining unassigned 
primary inputs are redundant, then there is no need for 
additional variable assignments since the C-CNF formula 
is satisfiable. Another important property of C-CNF 
formulas is that there is no point in assigning additional 
variables if the primary output has been already assigned a 
truth value. This is proved in the next theorem. 
 
Theorem 2 If ϕ ∈ C-CNF and χ is assigned a truth value 
under a truth assignment As of a set S ⊆ P(ϕ), then ϕ is 
satisfied. 
Proof If χ is assigned a truth value, then ∀v∈(P(ϕ)-S): 
∂f(As)/∂v = 0. This is true since none of the variables that 
belongs to (P(ϕ)-S) can change the primary output χ 
corresponding to f.  Thus, it follows from Theorem 1 that ϕ 
is satisfied.   
 
Theorem 2 defines our notion of satisfiability for CSAT. In 
addition, it opens the possibility for the primary output 
variable χ to be assigned a truth-value while there exist 
clauses that are not evaluated to true and have some 
remaining unassigned literals. Example 1 illustrates such a 
case. 
 
Example 1 The CNF formula of the circuit in Figure 3 is ϕ 
= (¬a + d) ⋅ (¬b + d) ⋅ (a + b + ¬d) ⋅ (c + ¬z) ⋅ (d + ¬z) ⋅ 
(¬d + ¬c  + z). In this example, P(ϕ) = { a, b, c} , χ = z and 
under the partial assignment As = { c = 0} , where S = { c} , z 
is assigned the truth value false and ϕ = (¬a + d) ⋅ (¬b + 

d) ⋅ (a + b + ¬d). We notice that under As both ∂fAs/∂a and 
∂fAs/∂b equal zero, since the function output value is 
already determined. Furthermore, there exists a truth 
assignment to the set of variables P(ϕ)-S  that satisfies the 
remaining clauses. This truth assignment is however of no 
interest since the primary output has already been assigned 
a truth-value. As an illustration for Definition 1, if As = { a 
= 1}  where S = { a}  then ϕ  = (c + ¬z) ⋅ (¬c + z) and 
∂fAs/∂b = 0, yet z is not assigned a truth value. Thus, ϕ is 
not satisfied but b is redundant under As. 
 
We notice that Rule 1 in Section 2.1 for BDD reduction is 
equivalent to Definition 1 in the CSAT context and thus 
tracing a path from the root to the 1-terminal or 0-terminal 
in the BDD of circuit C is equivalent to finding a satisfying 
assignment to the CNF formula ϕ of C using the same 
variable ordering of the path in the BDD. This notion is 
captured in the following lemma. 
 
Lemma 2 Given a BDD β and a CSAT formula ϕ for 
some logic circuit C, then under a variable ordering π and 
a truth assignment Aπ  on a certain path of β to the terminal, 
ϕ is satisfiable using the same variable ordering and truth 
assignment. 
Proof Assume the set of primary inputs is P. Then we can 
partition P into two sets, S and T, such that S contains all 
the variables that appear in π and T contains all the 
remaining variables. By Rule 1 of section 2.1, T is the set 
of all redundant nodes. But due to the equivalence of Rule 
1 and Definition 1, it follows from Theorem 1 that ϕ is 
satisfied.   
 
From this perspective, the equivalence checking problem 
between two circuits can be viewed as a search in the 
decision trees of the two circuits for a path that leads to the 
terminal 1(0) in one but leads to the 0(1) terminal in the 
other. This view allows the introduction of the relation 
between BDDs and the DP procedure as given by the 
following theorem. 
 
Theorem 3 Given a BDD β with a number of paths P and 
a C-CNF formula ϕ for some logic circuit C then if the 
variable ordering strategy of the DP procedure follows the 
same ordering for every path of β, then DP proves the 
equivalence of C against an equivalent version in P-1 
backtracks. 
Proof In order to prove the equivalence of two circuits, we 
have to check that every assignment that leads to 1(0) 
terminal in the BDD of one circuit leads to the same result 
in the other circuit. Consequently, if the variable ordering 

Fig 3: Circuit for example 1 
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for splitting in the DP procedure is the same as in the 
corresponding BDD, then considering an alternative path 
in the BDD leads to a backtrack in the DP procedure. 
Thus, the number of paths exceeds the total number of 
backtracks exactly by 1.   
  
We now utilize Theorem 3 to calculate optimal lower 
bounds on the number of backtracks that can be obtained 
from the DP procedure using the primary inputs for 
backtracking.  
    Searching among the N! different variable orderings for 
a N variable BDD helps identify the variable ordering(s) 
that produces the minimal number of paths. This minimal 
number of paths allows the calculation of a lower bound 
on the number of backtracks in the DP procedure as given 
by the following theorem.  
 
Theorem 4 Given a DP procedure that operates using 
Theorem 1 and 2, then the optimal number of backtracks 
needed to prove the equivalence of two equivalent circuits 
is bounded by the number of paths in the corresponding 
minimal path BDD. 
Proof Since the number of paths and backtracks are linked 
by Theorem 3 and there exists a variable ordering that 
minimizes the number of paths, then the optimal number 
of backtracks using the DP procedure can be obtained if 
we follow the same variable ordering for every path in the 
minimal path BDD.   
  
The importance of Theorem 4 is that it allows 
benchmarking any variable ordering strategy for the DP 
procedure against an optimal lower bound. We now 
develop a variable ordering heuristic for the DP procedure 
that tries to trace the same variable ordering for every path 
in the corresponding minimal path BDD of the circuit.  
 
4 Dynamic variable ordering strategy for the 
DP procedure 
 
From the previous section, we conclude that the variable 
ordering strategy should differ for every path of the 
decision tree, and furthermore result in no splitting on a 
redundant variable under the current partial assignment. In 
this section, we propose a structural method that avoids 
redundant splitting and tries to make the fewest possible 
splittings to satisfy ϕ. The method is based on the 
following theorem. 
 
Theorem 5 If a bounded gate lies on every path from the 
primary output χ to the unassigned primary input v∈(P(ϕ)-
S) under a current partial assignment As for a set S ⊂ P(ϕ), 
then ∂fAs/∂v= 0.  
Proof  The existence of a bounded gate (a gate with a 
specified output) in every path to χ implies that no value 
assigned to v can affect the function of the circuit since 

these bounded gates will suppress the propagation of the 
logic value. Thus, since f(As) remains unchanged under any 
assignment to v, ∂fAs/∂v=0.  
 
    In order to utilize Theorem 5, we proposed a DP 
variable ordering strategy that is a modification of a BDD 
variable ordering heuristic [13]. The method starts by 
assigning a weight of 1.0 to the primary output, and 
continues by propagating this weight to the primary inputs 
in the following manner: divide the output weight of each 
gate among its inputs, accumulating the weight of the fan-
out branches into the fan-out stem. Next, the primary input 
with the highest weight is chosen as the next variable to be 
split in the DP procedure. By unit clause propagation, we 
exclude all the gate outputs of the bounded literals from 
the next cycle of weight calculations. 
    The proposed weight assignment method assigns a 
weight of zero to every redundant primary input under the 
current partial assignment. Furthermore, the strategy splits 
on the largest weight input in an effort to obtain a minimal 
number of splittings for satisfying the CSAT formula. We 
illustrate the weight calculation procedure by the following 
example. 
 
Example 2 Suppose we are proving the circuit in Figure 
4.a against an equivalent version of it. In this case we have 
to compare if their BDDs are  isomorphic  or  using the DP  
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Table 1: Comparing Greedy search to BDD-based variable ordering for the DP procedure. 

procedure, we have to check that every path results in the 
same output assignment in both circuits. Applying the 
previous procedure of weight calculations to minimize the 
number of paths being compared, we trace the different 
paths of the BDD of the circuit in figure 4.a in the manner 
shown below. 
    From the initial weights given in figure 4.a, we split on 
x3 since it has the highest weight. Suppose x3 is assigned 
the true value. Then by unit clause propagation, gate h 
becomes bounded to the truth value false. The weight 
calculation procedure is executed again but this time by 
setting the weights of bounded gates to zero. Figure 4.b 
illustrates the new weights. Next, x1, x2 or x3 can be chosen 
to split on; the resultant search tree will always produce 
identical number of backtracks. Notice that bounded gates 
are marked with a ‘ * ’  in the corresponding figure. After 
finishing this half of the decision tree, x3 is flipped and 
assigned to false. The new calculated weights are shown in 
Figure 4.c.  Since x4 has the highest weight, we split on x4 
thus reaching the terminals. 
    We now construct the minimum path BDD 
corresponding to this circuit as shown in Figure 4.d. We 
notice in the BDD that the splitting choices made by the 
previous procedure traverse this BDD in exact ordering for 
each path, thus producing the minimal number of 
backtracks, 5, corresponding to the minimal number of 
paths, 6. 
    As was just illustrated, the proposed method has 
produced optimal results for the proposed example; 
however, the method is not in general optimal since it 
depends on the structure of the circuit. As shall be 
demonstrated in the next section, the proposed method is 
capable of achieving near optimal results. 
 

5 Experimental Results 
 

In this section, we present experimental results for our 
proposed approach. The experiments have been carried out 
on a PC with an Intel Pentium 233 Mhz processor and 
64MB of physical memory. We have used TEGUS [2] as a 
SAT solver and the CUDD [14] decision diagram package. 
    In our experiments we consider the performance of the 
proposed approach to verify the equivalence of the 
ISCAS’85 benchmark circuits [15] against their non-
redundant version. We benchmark our approach against 
the greedy search approach of TEGUS. Table 1 gives the 
results of such a comparison. Column 1 lists the circuit 
name. Column 2 provides the name of the output under 
verification. Columns 3 & 4 give the number of backtracks 
and time needed to prove the output using the TEGUS 
approach. Columns 5 & 6 give the number of backtracks 
and time needed to prove the output using the proposed 
approach. The possible “Abort”  notation in columns 3 & 5 
denotes reaching the 20 million backtrack threshold 
without reaching a successful resolution; the subsequent 
time columns in that case denote the time needed to reach 
this limit. Columns 7 & 8 report the percentage decrease in 
the number of backtracks and time, respectively. Column 9 
provides the near minimal number of paths in the 
corresponding BDD.  In obtaining the number of paths, we 
only consider a subspace of the possible variable 
orderings. We compare the number of paths that result 
from sifting [16] the corresponding BDD to a minimum 
size and picking the minimal path. For space 
considerations, we consider only three outputs from each 
circuit.  
    Comparing the greedy approach to the proposed variable 
ordering strategy, we observe that the proposed approach 

TEGUS Greedy Search Proposed Approach Difference  Minimal Path BDD Circuit Output 
Name 

Backtracks Time 
(seconds) 

Backtracks Time  
(seconds) 

Backtracks Time #Paths 

370gat Abort 771.00 943200 185.00 95.3% 76.01% 894606 

432gat Abort 770.00 816012 235.00 95.9% 69.48% 798906 

c0432 

329gat 1646605 22.50 81912 5.94 95.0% 73.60% 57513 
od1 Abort 1686.00 Abort 10351.00 - - 20000000 
od18 Abort 1685.00 Abort 10245.00 - - 23000000 

c0499 

od31 Abort 1691.00 Abort 10627.00 - - 23000000 
864 649741 12.30 164656 27.50 74.7% -123.58% 89937 
850 37225 0.60 24171 3.45 35.1% -475.00% 21981 

c0880 

874 Abort 498.00 1083156 278.00 94.6% 44.18% 532793 
1353 Abort 1921.00 Abort 8501.00 - - 21000000 
1354 Abort 1892.00 Abort 8427.00 - - 23000000 

c1355 

1355 Abort 1984.00 Abort 8602.00 - - 23000000 
57 Abort 718.00 147457 11.90 99.3% 98.34% 134221 
60 Abort 1708.00 28161 20.10 99.9% 98.82% 26638 

c1908 

66 Abort 2058.00 14249 10.40 99.9% 99.49% 12638 
399 24550 0.73 4528 1.34 81.6% -83.56% 1636 
384 6107715 652.00 70997 57.20 98.8% 91.23% 65535 

c3540 

387 1582929 213.00 17312 17.00 98.9% 92.02% 16456 
688 Abort 300.00 23974 13.00 99.9% 95.67% 13919 
843 Abort 3383.00 211181 162.00 98.9% 95.21% 103569 

C5315 

818 85989 3.50 6537 2.18 92.4% 37.71% 2489 
373 16 0.01 10 0.01 37.5% 0.00% 10 
376 40952 1.30 15416 4.93 62.4% -279.23% 7152 

C7522 

359 2474096 114.00 585584 285.00 76.3% -150.00% 196592 
2223 157 0.01 102 0.01 35.0% 0.00% 102 

3895 174315 12.20 106423 108.00 38.9% -785.25% 109668 

c6288 

4591 2794411 255.00 1705027 2689.00 39.0% -954.51% 1793496 



results on the average in 90% decrease in the number of 
backtracks. The time needed to complete the backtracks 
varies from reduction in 13 cases with an average of 70% 
decrease to increases in about 7 cases with an average 
increase of about 4 times. While at first glance the time 
results look inconclusive, it can be easily noted that the 
increases are essentially associated with low-backtrack, 
provable outputs, since in these cases the recurring weight 
assignment costs cannot be amortized across the small 
number of backtracks. Our approach greatly improves the 
performance of large search tree cases, the main focus of 
practical interest. We also notice that within the limit of 20 
million backtracks, TEGUS fails to complete on 7 outputs 
while the proposed approach proves them in a relatively 
low number of backtracks.     
   As proved in Section 3, the minimum number of paths 
that can be obtained from the corresponding BDD is a 
lower bound on the number of backtracks that can be 
obtained in the DP procedure. The number of paths 
provides an ability to benchmark various ordering 
techniques and also provides an insight on the performance 
of the DP procedure. For example, the huge number of 
paths in case of the c0499 & c1355 circuits (they are 
functionally equivalent) suggests that they are hard-to-
prove outputs using the DP procedure. In addition, in 
circuits, like the c6288, where the variation of the number 
of paths with respect to the variable ordering is small, the 
dynamic weight assignment technique constitutes a time 
consuming step with respect to the overall time, as the 
number of backtracks varies slightly with respect to the 
variable splitting strategy2. 
    
6 Conclusions 
 

In this paper we have studied the relation between the 
search tree of the DP procedure and the BDD of the 
corresponding function, establishing that the number of 
paths from the root node to the terminals of the BDD is 
directly related to the number of backtracks needed to 
prove the equivalence of two functionally equivalent 
circuits. This relation introduces the ability to calculate an 
optimal lower bound on the number of backtracks needed 
to prove the equivalence checking problem. In addition, 
this relation has led to the conclusion that the capture of 
the variable ordering of the minimal path BDD in the DP 
procedure implies a reduction in the number of backtracks 
needed to prove the problem. In order to exploit this 
relation, we have devised a variable ordering technique for 
the DP procedure that through experimental results has 
exhibited superior performance in terms of the number of 
backtracks and time needed to prove the equivalence 
problem. The relation between the two procedures offers 
novel ways of tight integration of different prover 
approaches in a verification tool.  

                                                
2 After numerous experiments, we concluded that there is 
no apparent relation between the number of nodes and 
paths in a given BDD. 
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