
Faster SAT and Smaller BDDs via Common
Function Structure

Fadi A. Aloul
Igor L. Markov
Karem A. Sakallah

Technical Report

December 12, 2001

THE UNIVERSITY OF MICHIGAN

Computer Science and Engineering Division
Department of Electrical Engineering and Computer Science
Ann Arbor, Michigan, 48109-2122
USA

2

Abstract

The increasing popularity of SAT and BDD techniques in verification and synthe-
sis encourages the search for additional speed-ups. Since typical SAT and BDD algo-
rithms are exponential in the worst-case, the structure of real-world instances is a
natural source of improvements. While SAT and BDD techniques are often presented
as mutually exclusive alternatives, our work points out that both can be improved via
the use of the same structural properties of instances. Our proposed methods are based
on efficient problem partitioning and can be easily applied as pre-processing with
arbitrary SAT solvers and BDD packages without source code modifications.

Finding a better variable-ordering is a well recognized problem for both SAT solv-
ers and BDD packages. Currently, all leading edge variable-ordering algorithms are
dynamic, in the sense that they are invoked many times in the course of the “host” algo-
rithm that solves SAT or manipulates BDDs. Examples include the DLCS ordering for
SAT solvers and variable-sifting during BDD manipulations. In this work we propose
a universal variable-ordering MINCE (MIN Cut Etc.) that pre-processes a given Bool-
ean formula in CNF. MINCE is completely independent from target algorithms and
outperforms both DLCS for SAT and variable sifting for BDDs. We argue that MINCE
tends to capture structural properties of Boolean functions arising from real-world
applications. Our contribution is validated on the ISCAS circuits and the DIMACS
benchmarks. Empirically, our technique often outperforms existing techniques by a
factor of two or more. Our results motivate search for stronger dynamic ordering heu-
ristics and combined static/dynamic techniques.

3

1 Introduction

Algorithms that efficiently manipulate Boolean functions arising in real-world ap-
plications are becoming increasingly popular in several areas of computer-aided de-
sign and verification. In this work we focus on two classes of these algorithms:
complete Boolean satisfiability (SAT) solvers [21, 27, 30, 35] and algorithms for ma-
nipulating Binary Decision Diagrams (BDDs) [6, 9, 18]. A generic complete SAT solver
must correctly determine whether a given Boolean function represented in conjunctive
normal form (CNF) evaluates to false for all input combinations. Aside from its pivotal
role in complexity theory, the SAT problem has been widely applied in electronic de-
sign automation. Such applications include ATPG [17, 31], formal verification [3], tim-
ing verification [28] and routing of field-programmable gate arrays [22], among others.
While no exact polynomial-time algorithms are known for the general case, many ex-
act algorithms [21, 27, 30, 35] manage to complete very quickly for problems of prac-
tical interest. Such algorithms are available in the public domain and are typically
based on “elementary steps” that consider one variable at a time (e.g. branch-and-
bound algorithms select the next variable for branching.) Previously published results
[21, 27, 30, 35], as well as our empirical data, clearly imply that the order of these steps
critically affects the runtime of leading edge SAT algorithms. This order of steps de-
pends on the order of variables used to represent the input function, but can also be
controlled dynamically based on the results of previous steps.

BDDs* [6, 9] are commonly used to implicitly represent large solution spaces in com-
binatorial problems that arise in synthesis and verification. A BDD is a directed acy-
clic graph constructed in such a way that its directed paths represent combinatorial
objects of interest (such as subsets, clauses, minterms, etc.). An exponential compres-
sion rate is achieved by BDDs whose number of paths is exponential in the number of
vertices and edges (graph size). BDDs can be transformed by algorithms that visit all
vertices and edges of the directed graph in some order and therefore take polynomial
time in the “current” size of the graph. However, when new BDDs are created, some of
these algorithms tend to significantly increase the number of vertices, potentially
leading to exponential memory and runtime requirements. Several BDD ordering
techniques have been proposed to overcome this problem. These include static [11, 19]
and dynamic approaches [23, 25]. Just as for SAT solvers, the order of “elementary
steps” is critically important. This order can either be chosen statically, i.e. by pre-pro-
cessing the input formula, or dynamically, based on the outcome of previous steps dur-
ing the search process. The construction order of the BDD can also have a significant
effect on the intermediate sizes of the BDD.

A reliable and fast variable-ordering heuristic for a given application can dramati-
cally affect its competitiveness and is often considered an important part of implemen-
tation. For example, the leading-edge SAT solver GRASP [27] is typically used with
the dynamic variable-ordering heuristic DLIS, and the renowned CUDD package [29]
for BDD manipulation incorporates the dynamic variable-sifting heuristic which is ap-
plied many times in the course of BDD transformations. Variable sifting is affected by
the initial order, but can also be completely turned off to improve runtime. Sifting for
BDDs is relatively more expensive than most dynamic ordering heuristics for SAT.
However, the effect of ordering heuristics on total runtime is highly instance-specific.

* Only Reduced Ordered Binary Decision Diagrams (ROBDDs) are considered in this work.

4

We noticed that, for some CNF formulae in Table II (such as hole-9 and par16-2-c),
turning off sifting for BDD manipulations and turning off DLIS in SAT resulted in sig-
nificantly smaller runtimes. For BDDs, this also led to memory savings, especially for
circuit benchmarks from the ISCAS89 set. In other words, using a good order of vari-
ables when encoding problems into a CNF formula was, by itself, superior to using the
best known dynamic heuristic with a poor static order of variables (note that static and
dynamic can be trivially combined). In practice, static variable- orderings are easier to
work with because they do not require modifying the source code of the host algorithm.
In particular, the same variable-ordering implementation can be used for SAT solvers
and BDD manipulations if it, indeed, improves both classes of algorithms. However,
an application-specific encoding procedure may overlook superior static variable-or-
derings. Therefore, we propose a domain-independent algorithm to automatically find
good “static” variable-orderings that capture global properties of CNF formulae and
circuits.

This work involves three types of Boolean function representations: CNF formulas,
Boolean circuits, and BDDs. While BDDs are the most flexible of popular representa-
tions, they often need to be constructed from other representations, such as CNFs, cir-
cuits, or disjunctive normal form formulae. We address the construction of BDDs from
circuits and CNFs as shown in Figure 1.

The remainder of the paper is structured as follows. In Section 2, we review existing
work on solving CNF instances using SAT solvers and constructing BDDs from CNF
and circuits. Section 3 motivates our reliance on circuit/CNF partitioning and place-
ment and reviews recent progress in that area. Section 4 describes applications to SAT
and BDDs and shows examples of hypergraph partitioning. Section 5 provides exper-
imental evidence of the effectiveness of partitioning-based variable-ordering. Section
6 concludes the paper and provides perspective on future work.

2 Background

2.1 Solving CNF problems using SAT

A conjunctive normal form (CNF) formula on n binary variables is the con-
junction (AND) of m clauses each of which is the disjunction (OR) of one or
more literals, where a literal is the occurrence of a variable or its complement. The size
of a clause is the number of its literals. A formula denotes a unique n-variable Bool-
ean function and each of its clauses corresponds to an implicate of [13].
The satisfiability problem (SAT) is concerned with finding an assignment to the argu-
ments of that makes the function equal to 1 or proving that the function is
equal to the constant 0.

Fig. 1. Conversions between Compact Representations of Boolean Functions.
(^ stands for this work)

SAT SolverBDD

Circuit

CNF
[1, ^]

[34]
[11,19, ^] [26]

BDD Engine

ϕ x1 … xn, ,
ω1 … ωm, ,

ϕ
f x1 … xn, ,() f

f x1 … xn, ,()

5

Backtrack search algorithms implicitly traverse the space of possible binary as-
signments to the problem variables looking for a satisfying assignment. A typical
backtrack search algorithm consists of three main engines:

• Decision engine: that makes elective assignments to the variables

• Deduction engine: that determines the consequences of these assignments,
typically yielding additional forced assignments to, i.e. implications of, other
variables

• Diagnosis engine: that handles the occurrence of conflicts (i.e. assignments that
cause the formula to become unsatisfiable) and backtracks appropriately.

Several techniques have been proposed to improve the above three engines. Never-
theless, selecting an intelligent variable decision order remains a challenge. Many de-
cision heuristics have been proposed. Some are based on an analysis of the number of
variables and clauses in the problem, such as DLCS (select the variable that appears
in the maximum number of unresolved clauses) or DLIS (select the literal that ap-
pears in the maximum number of unresolved clauses). On the other hand, others are
based on randomized algorithms.

2.2 Construction of BDDs from CNFs

CNF formulae can be viewed as a two-level logic circuit, in which each clause is rep-
resented by an OR gate whose fanins are equal to the number of literals in the clause.
The outputs of all OR gates are ANDed together to produce the function . In contrast,

2
n

Fig. 2. CNF formulas representing simple gates

z BUF x1()=

z NOT x1()=

z NOR x1 … xj, ,()=

z OR x1 … xj, ,()=

z AND x1 … xj, ,()=

x1 z+() x1 z+()⋅

x1 z+() x1 z+()⋅

xi z+()

i 1=

j

∏ xi z+

i 1=

j

∑

⋅

xi z+()

i 1=

j

∏ xi z+

i 1=

j

∑

⋅

xi z+()

i 1=

j

∏ xi z+

i 1=

j

∑

⋅

xi z+()

i 1=

j

∏ xi z+

i 1=

j

∑

⋅

Gate Type Gate Function Gate Formula

z NAND x1 … xj, ,()=

z NOR x1 … xj, ,()=

f

6

circuit consistency functions can also be represented in CNF in linear time [26]. Each
gate is represented using a CNF formula that denotes a valid input-output assignment
to the gate. The CNF formula for the circuit consists of the conjunction of the formulae
representing each gate. Figure 2 shows the CNF formulae for simple gates.

In general, dynamic sifting is the main variable ordering heuristic used in construct-
ing BDDs from CNFs. In this report, we show that BDD variable ordering in addition
to the order in which clauses are processed can be very effective in reducing the exe-
cution runtime and the size of the BDDs.

2.3 Construction of BDDs from Circuits

Algorithms that construct a BDD for a single-output function given by a Boolean cir-
cuit are typically recursive. They start by constructing a BDD for each primary input
(PI) and finish by constructing a BDD for the primary output (PO). The gates are tra-
versed in a topological order, and at every step a BDD is computed for a new gate using
BDDs for its fanin gates. As mentioned earlier, the size of the BDD and its execution
time is dependent on the ordering of its variables. A good ordering can lead to a small-
er BDD and faster runtime, whereas a bad ordering can lead to an exponential growth
in the size of BDD and hence can exceed the available memory. Several heuristics have
been proposed to order the BDD variables based on the given circuit input informa-
tion. In the following, we describe some of the common variable ordering techniques:

• Original: Each PI is appended to the BDD variable ordering according to its
original index in the circuit.

• DFS: A depth-first search (DFS) is performed starting from the PO. A PI is
appended to the ordering as soon as its traversed.

• BFS: A breadth-first search (BFS) is performed starting from the PO. A PI is
appended to the ordering as soon as its traversed.

• Fujita [11]: A DFS is performed starting from the PO. PIs with multiple fanouts
are appended first to the ordering followed by PIs with single fanouts.

• Malik-level [19]: POs are assigned level 0. The level for each node in the circuit is
computed by , where corresponds to the fanouts
of node . PIs with the maximum levels are appended to the ordering first.

• Malik-fanin [19]: A DFS is performed starting from the PO. However, unlike
previous approaches, in which ties are broken between gate fanins by selecting
the fanin with the smallest index, the transitive fanin (TFI) depth size is used a
tie-breaker. The TFI-depth of a node is defined as the maximum level of any
node in the fanin cone of node . Fanins with larger TFI-depths are visited first.
A PI is appended to the ordering list as soon as its traversed.

The last three heuristics have been shown to provide the best performance when ap-
plied to circuits. Fujita’s heuristic aims to minimize the number of crosspoints of nets
in the circuit diagram. On the other hand, Malik’s heuristics prioritize PIs that are far

level g() max level go() 1+()= go

g

j

j

7

away from the POs in the circuit, since these PIs are expected to greatly influence the
circuit behavior. The order of BDD variables can be further improved during the BDD
construction by the dynamic sifting heuristic [25], that is now considered an integral
part of every BDD package [29] and entails pairwise swaps of variables.

In addition to ordering the BDD variables (PIs in circuit), the order in which gates
are processed can also be varied. After the BDD variables are ordered as explained
above, we consider three ways to order gates: (1) use the gate order from the DFS tra-
versal from POs, (2) use the gate order from the BFS traversal from POs, (3) perform
a BFS from PIs. In case of a tie, the gate with the smallest index is selected†. In gen-
eral, option 1 shows the best performance.

3 Problem Partitioning

We first observe that Boolean functions arising in many applications represent spa-
cial, logical or causal dependencies/connections among variables. Therefore, process-
ing “connected” variables together seems intuitively justified. For example, if a large
SAT instance is not satisfiable because of a small group of inconsistent variables, the
variables in this group must be “connected” by some clauses. If we can partition all
variables into, say, two largely independent groups, then such a function is likely to
be represented by a BDD with a small cut, i.e. there will be relatively few edges be-
tween these two groups. BDDs with many small cuts tend to have fewer edges, and
therefore fewer vertices (since every vertex is a source of exactly two edges). This in-
tuition suggests that we interpret CNF formulae as hypergraphs by representing vari-
ables by vertices and clauses by edges. Two vertices share an edge if the two
corresponding variables share a clause in the formula. Applying balanced min-cut par-
titioning to such hypergraphs separates the original CNF formula into relatively inde-
pendent subformulae. Ordering the variables in each part together would be a step
towards ordering “connected” variables next to each other, as advocated earlier. Once
the first partitioning is performed, the parts can be partitioned recursively. This pro-
cess can provide a complete variable-ordering. We note that cuts of CNF formulae
have been studied in [24], and instances having small cuts were theoretically shown
to be “easy” for SAT. Our work seeks constructive and efficient ways to amplify the
“easiness” of CNF instances with small cuts by finding good variable-orderings.

Additionally, circuit cutwidth has been correlated with the size of BDDs [2]. Figure
7(a-b) shows two topological orderings of a small circuit that lead to BDDs of different
sizes. For a given ordering, we define the netlength of a given signal net as the maxi-
mal difference in indices of gates on this net. We observe that smaller total netlengths
tend to co-exist with smaller BDDs. This connection can be explained as follows. It is
known from VLSI placement, that smaller netlengths correlate with smaller cuts,
which is used in min-cut placement [7]. Smaller cut-width in circuits have been related
to smaller BDDs in [2]. Therefore, we will attempt to produce topological orderings
that minimize total netlength, by using min-cut placement.

† Different tie-breaking strategies lead to different topological orderings. We experimented with Malik’s level and
fanin options as gate tie-breakers. The results were similar to the index tie-breaking approach.

8

3.1 Recursive Bisection and Hypergraph Placement

Recursive min-cut bisection of hypergraphs has been intensively studied in the con-
text of VLSI placement for at least 30 years. In particular, the recursive bisection pro-
cedure described earlier for CNF formulae corresponds to the linear placement
problem [14], where hypergraph vertices are placed in one, rather than in two, dimen-
sions. It is well-known that placement by recursive bisection leads to small “half-pe-
rimeter wire-length” that translates back to small average clause span in CNF
formulae. Here we define the span of a clause with respect to a variable-ordering as
the difference between the greatest and the smallest variables in this clause (so that the
span exactly corresponds to the half-perimeter wirelength of a hyperedge). We can also
define the i-th cut with respect to a given ordering as the number of clauses including
variables with numbers both less than and greater than i+0.5.

Observation: Given a variable-ordering, the total clause span equals the sum of all
cuts (and denote the set of hyperedges and vertices, respectively, in the hyper-
graph)

The average clause span is proportional to the average cut,

and the coefficient is approximately equal to the clause-to-variable ratio of the CNF
formula. (Since the total number of clauses and variables equals the total number of
hyperedges and vertices, respectively)

It is known from VLSI placement that recursive min-cut bisection of hypergraphs
produces placements with small total net-length. Since the total net-length of hyper-
graphs corresponds to the total clause span of CNF formulae, we will use the leading-
edge hypergraph placer CAPO [7] based on recursive min-cut bisection [8, 16] to min-
imize the average clause spans and cuts of CNF formulae. CAPO implements several
improvements to classical recursive bisection, reducing the total clause span. Such
techniques include bisection with high balance tolerance and adaptive cut-line selec-
tion, which allows greater freedom in partition sizes in order to improve the cut. The
underlying multi-level hypergraph partitioner MLPart [8] outperforms the well-
known hMetis [16], while both rely on Multi-Level Fiduccia-Mattheyses (MLFM) par-
titioning heuristics. Since the MLFM heuristic is randomized, it returns different so-
lutions on every call (we call it a start). On every call, MLPart executes two

E V

TotalSpan span e()
e E∈
∑ cut i()

i 0=

V 1–

∑= =

AverageSpan

span e()
e E∈
∑

E
-----------------------------------=

AverageCut

cut i()

i 0=

V 1–

∑

V 1–
------------------------------- E

V 1–

span e()
e E∈
∑

E
----------------------------------- E

V
------- V

V 1–
---------------- AverageSpan⋅ ⋅= = = =

AverageCut Clauses
Variables

-------------------------------- AverageSpan⋅≈

9

independent starts and applies one V-cycle [8, 16] to further improve the better solu-
tion.

Wood and Rutenbar have already used linear hypergraph placement as a variable-
ordering technique for BDD minimization in 1998 [33]. However, they used spectral
methods which entail converting hyperedges to edges and then minimizing quadratic
edge length, rather than the half-perimeter (linear) edge length. Spectral placement
methods used in [33] do not appear to have direct connection to cut minimization. As
of 2001, spectral methods for partitioning and placement are practically abandoned
due to their unacceptable runtime on large instances and poor solution quality as mea-
sured by half-perimeter edge length. This can be contrasted with min-cut placement
that is among the fastest known approaches, provides good solutions and is obviously
related to cut minimization.

4 Proposed Techniques

4.1 Ordering Variables in CNFs

We propose the following heuristic that orders variables in CNF formulae (see Fig-
ure 3(a)). An initial CNF formula (that may originate from circuits or other applica-
tions) is converted into a hypergraph (see Figure 4). An ordering of hypergraph
vertices is then found via min-cut linear placement and translated back into an order-
ing of CNF variables. The original CNF formula is reordered and used (i) as input to
an arbitrary SAT solver, or (ii) to construct a BDD representation of the Boolean func-
tion it represents. The results produced by SAT solvers and BDD manipulations are
then translated back into the original variable order.

 Note that this approach does not require modifications in SAT solvers, BDD ma-
nipulation software or the min-cut placer.‡ We call this heuristic MINCE (MIN-Cut,
Etc.) and implemented it by chaining publicly available software with PERL scripts.

Circuit

Linear Min-cut Placement by

 Preprocess circuit

BDD Construction

Hypergraph

Fig. 3. The MINCE heuristic based on Multi-Level Fiduccia-Mattheyses (MLFM) partitioning [7, 8, 16]
for (a) CNF problems (b) circuits

Recursive MLFM Partitioning

MINCE
Flow

CAPO

Circuit

CNF instance

Linear Min-cut Placement by

Variable ordering for CNF

 Preprocessed CNF instance

GRASP and SATO BDD Construction

Hypergraph

Recursive MLFM Partitioning

MINCE
Flow

CAPO

Gates and Pimary Input ordering

(a) (b)

10

To enable black-box reuse of publicly available software (CAPO), we ignore polarities
of literals in CNF formulae. We note that the oriented version of min-cut bisection has
been extensively studied in the context of timing-driven placement. In particular, a
small unoriented cut can be interpreted as an oriented cut which is not greater. Vice
versa, in most real-world examples, near-optimal oriented cuts can be found by unori-
ented partitioning.

On the empirical side, our results with BDD minimization presented below show
that MINCE, by itself, outperforms variable-sifting (used without static ordering) in
both runtime and memory. According to [13], as of 2000, variable sifting is the best
published dynamic variable reordering heuristic for BDDs with near-linear perfor-
mance.** From this, we conclude that our proposed technique outperforms all other
published scalable approaches to BDD minimization. Of course, dynamic variable re-
ordering techniques can be applied on top of MINCE or can use MINCE order as a tie-
breaker.

Applications that entail several BDD operations or solve similar SAT problems can
reuse the same static ordering for all runs. On the other hand, since MINCE is ran-
domized and returns different solutions every time it is called, it can also be used to
perform random restarts of SAT solvers [12].

4.1.1 Example

Figure 4 illustrates the difference between a good and a bad variable order for a CNF
formula. We use the CAPO placer to find an ordering of vertices, i.e. variables, that
produces a small total (equivalent average) clause span. Figure 4(b) shows a sample
order returned by MINCE for the example described. The total span of all clauses in
this CNF formula is reduced from 8 to 4 by this better variable order. In addition, the
number of edges crossing each variable (cut) is reduced. The original problem has a
maximum variable cut (at variable) of 3 which is reduced to 1 in the MINCE order.

In general, structured problems such as the hole-n series of benchmarks (e.g., hole-
10, hole-11, etc.) are divided by MINCE into several partitions. Figure 5 shows such
an example. The initial variable order has average clause span and variable cut equal
to 74 and 20, respectively. In comparison, the new variable order, has average clause
span and variable cut equal to 17 and 4.7, respectively. As shown in Figure 5(b), this
reduction exposes the problem’s structure. Our experiments show that such MINCE

‡ Commercial EDA software can be used, e.g. Cadence QPlace.
** Some generic or simulated annealing reordering algorithms can gene-rate smaller BDDs but may incur longer runtimes.

Fig. 4. Example of (a) default vertex-ordering (b) improved vertex-ordering

a b c d
variables

(a)

f a b c d e, , , ,() b d+() c e+() a d e+ +()∧ ∧=

e b d a e
variables

c

(b)

cl3cl1 cl2

c

11

variable-ordering generally speeds up SAT solvers and improves runtime/memory of
BDD manipulations.

Similar techniques and intuitions apply in related contexts. For example, one can
apply MINCE to DNF formulae rather than CNF formulae. In this and related cases,
one starts with a description of a Boolean function that is sparse, i.e., connects very
few groups of variables (by clauses, minterms, in terms of circuit connectivity, etc.).
Recursive partitioning orders the “connected” variables close to each other. Since con-
nections between variables often imply logical dependencies, min-cut orderings allow
SAT solvers and BDD engines to track fewer variables beyond their neighborhoods.

4.2 Ordering Clauses in CNFs

In Section 4.1, we used linear hypergraph placement to generate a static variable or-
dering technique to speedup SAT and minimize BDDs. We propose to further mini-
mize the BDD and speed up the BDD construction runtime by ordering the clauses
using linear hypergraph placement. If we can partition the clauses into several
groups, in which clauses in each group share common variables, then such a function
is expected to have a faster runtime and smaller intermediate BDD sizes, since we are
likely to traverse a specific part of the BDD that only involves the common shared vari-
ables. On the other hand, constructing BDDs for a random order of clauses, could re-
quire traversing the BDD between its highest and lowest index node each time a
clause is added.

We propose the following heuristic that orders the clauses in CNF formulae. An ini-
tial CNF formula is converted to a hypergraph, in which clauses are represented by
vertices. For each variable , a hyperedge is created that connects all clauses includ-
ing the variable . Applying balanced min-cut partitioning to such hypergraphs sepa-
rates the CNF formula into relatively independent subformulae. Constructing the
BDD for the clauses in each part would be a step towards manipulating given parts of
the BDD, as advocated earlier. Figure 6 shows an example. When building the clauses
using the original clause order, the BDD will have a maximum size of 4 after con-

Fig. 5. Sample hypergraph representing the structure of the hole-7 instance using
(a) default vertex-ordering (b) improved vertex-ordering.

Variables are represented by points on the x-axis and clauses are represented by stars of edges that
connect those points. The center-point of each star is elevated proportionally to the span of the clause
with the given ordering of the variables (i.e., the distance between the right-most and the left-most

variables in the clause)

(a) (b)

x
x

12

structing the second clause. In comparison, if the improved clause order is used, the
BDD will have a maximum size of 3 levels after constructing the fifth clause.

In addition to the min-cut clause ordering approach, we propose to order the clauses
according to their literals. Each clause level is computed as .
Clauses with the highest levels are constructed first, since they include BDD variables
with the highest index or at the bottom of the BDD. Such an approach allows for a bot-
tom-up construction of the BDD and permits the manipulation of variables at specific
levels in the BDD. We will refer to this as the Bottom-Up clause ordering approach.

4.3 Ordering Primary Inputs in Circuits

Similarly, recursive min-cut bisection can also be applied to circuits to identify tight-
ly connected clusters of gates. Processing such clusters should help in reducing the
construction runtime and the size of BDDs. We use the min-cut circuit placer CAPO
[7], based on multi-level Fiduccia-Mattheyses min-cut partitioner MLPart [8]. Since
circuit partitioning and placement are typically performed on hypergraph representa-
tions of circuits, we distinguish two such hypergraph models: the circuit hypergraph
(Circuit HG) and the dual hypergraph (Dual HG).

A Circuit HG models circuits by representing each gate with a hypergraph node and
each signal net driven by a gate with a hyperedge. PIs and signal nets driven by PIs
are also included as hypergraph nodes and hyperdges, respectively. Each hyperedge
connects the fanout of a gate to the fanins of the gates that its connected to. An exam-
ple is shown in Figure 7(a). After CAPO is applied to this hypergraph and returns an
ordering of gates, the ordering of PIs is derived from the gate ordering.

A Dual HG can also be generated by replacing the above hyperedges, with new hy-
peredges that connect the fanout of each gate to its fanins. Figure 7(b) shows an exam-
ple of a Dual HG. Dual HGs are more likely to produce better PI ordering than the

level min literals()=

Fig. 6. Example of (a) default clause-ordering (b) improved min-cut clause-ordering

CA B D E

f Va Vb Vc, ,() Va Vb+() Vc Vb+() Va() Vc() Vb()∧ ∧ ∧ ∧=

ED B A C

A B C D E

(a) (b)

Va Vb+()
Vc Vb+()
Va()
Vc()
Vb()

Vb Va+()

Vc Vb+()

Va()

Vc()

Vb()

max-cut = 3
total netlength = 8

max-cut = 1
total netlength = 4

2
3
3
3
3

BDD
Depth

Max
BDD
Nodes

2
4
4
4
4

1
1
2
2
3

1
1
2
2
3

BDD
Depth

Max
BDD
Nodes

Order
BDD Construction

Order
BDD Construction

13

Circuit HG approach, since the inputs of each gate are ordered closely to the output of
the gate. Figure 7(c-d), show an example of the hypergraph generated by CAPO for the
given circuit using the HG and the Dual HG models. Clearly, the total netlength and
the max-cut were reduced for both cases. The original ordering of the Dual HG model
implied a total netlength, max-cut, and BDD size of 5, 24, and 9 nodes, respectively.
In comparison, the new PI-ordering for the Dual HG model reflected a total netlength,
max-cut, and BDD size of 3, 14, and 5 nodes, respectively. We conjecture that such PI
ordering should yield better BDD runtime and memory results.

5 Empirical Results

In this section, we present experimental evidence of the improvements obtained by
MINCE. We used GRASP as our SAT solver [27], CUDD as our BDD engine [29], and
CAPO as our min-cut circuit placer. Empirical results are given for the DIMACS [10]
and the n-queens CNF benchmarks, as well as flat versions of the ISCAS89 circuit
benchmarks [4] expressed in CNF and the ISCAS85 circuit benchmarks. Experiments
were conducted on a Pentium-II 333 MHz, running Linux with 512 MB RAM. For all
experiments, the CPU time was set to 10K and 1K seconds for the SAT and BDD ex-
periments, respectively. The memory limit was set to 500MB for all experiments.

SAT Experiment: Table I and Table II show runtime in seconds for MINCE versus
the dynamic MSTS, MSOS, DLCS and DLIS orderings, as well as the static Original
variable-ordering [27]. “#I” denotes the number of instances solved by each decision

Fig. 7. Example using (a) default variable ordering with Circuit hypergraph (b) Dual hypergraph
(c) min-cut variable ordering with Circuit hypergraph (d) Dual hypergraph

c(3)

b(2)

a(1)
d(4)

e(5)

ca b d e f g h i

h

f

g

i

max-cut = 3
total netlength = 18
BDD size = 9 Nodes

(a)

PI(BDD Var)
ig

a(1)
d(2)

h

f c(5)
b(3)
e(4)

fa d b e g h c i

max-cut = 2
total netlength = 10
BDD size = 5 nodes

c(3)

b(2)

a(1)
d(4)

e(5)

ca b d e f g h i

h

f

g

i

max-cut = 5
total netlength = 24
BDD size = 9 Nodes

(d)

PI(BDD Var)
ig

a(1)
d(2)

h

f c(5)
b(3)
e(4)

fa d b e g h c i

max-cut = 3
total netlength = 14
BDD size = 5 nodes

(b)

(c)

14

heuristic. The average variable cut is included for the original and the MINCE vari-
able orders. As the data clearly illustrate, deciding on closely-connected variables
leads to a reduction in search time. Since “connected” variables are ordered next to
each other, this approach allows the solver to quickly identify and avoid unpromising
partial solutions. In other words, instead of deciding on variables from separate parti-
tions, one partition is considered at a time. This approach is more effective on struc-
tured problems, such as the hole-n or the n-queens problem, which consist of multiple
partitions. On these problems, MINCE finds variable orders compatible with the prob-
lem’s structure, and this speeds up SAT solvers and BDD engines. For example, a
speedup of 16, 16, 16, 14, and 9, was obtained for the hole-10 benchmark over the
MSTS, MSOS, DLCS, DLIS, and Original decision heuristics, respectively. MINCE
also achieved significant speed-ups over other decision heuristics for large instances
from the n-queens set. Particularly, none of the dynamic or Original decision heuristic
were able to solve the nqueens-35 instance in 10K seconds, but it was solved in less
than 320 seconds using MINCE.

In general, GRASP run time is almost always reduced when the recursive bisection
ordering is used. However, for particularly easy†† SAT instances recursive bisection
itself requires more time than GRASP‡‡ with either Original, MSTS, MSOS, DLCS,
or DLIS ordering. Observe that MINCE has a worst- and best-case performance of

. On the other hand, SAT problems have an exponential worst-case and a
best-case of , where N is the number of variables and clauses in the problem.
Hence, MINCE should be useful in solving instances that otherwise require exponential
runtime, but unhelpful in solving easy instances.

To explore the variability of orders returned by independent random starts of
MINCE, we applied GRASP to three different orders of benchmark ii32d3.cnf, gener-
ated by MINCE. Two cases time out in 10K seconds and the third was solved in 14.8
seconds. This empirically confirms the heavy-tail distribution theory for SAT instanc-
es [12] and suggests that a solution can be produced in 60 seconds if multiple starts of
the SAT solver are launched with a 20-sec time-out (MINCE took 55 seconds per order
on that instance, which is negligible compared to a 10K time-out).

†† We define easy instances as those that can be solved in near-linear time.
‡‡ Same is expected with comparable and faster solvers, e.g. Chaff [21].

TABLE I: Summary of GRASP runtimes for the DIMACS set
(winning and total runtimes are in bold).

Bench
mark

#I
MSTS MSOS DLCS DLIS Original MINCE Avg Var Cut

#I Time #I Time #I Time #I Time #I Time #I Order + Solve = Total Fix New
aim 72 72 2.61 72 3.16 72 3.81 72 6.71 72 2.72 72 148 2.94 150 11676 6542
bf 4 4 2.63 4 4.97 4 2.56 4 2.3 3 10019 4 50.5 2.1 53 2853 440
dub 13 13 29.06 13 18.12 13 2.15 13 2.73 13 0.71 13 6.91 0.69 7.6 1717 106
hanoi 2 1 10005 1 12267 0 20000 0 20000 2 83.13 2 42.8 83.8 127 408 321
hole 5 3 26956 2 30193 4 11705 5 9466 5 6287 5 4.07 660 664 581 108
ii16 10 10 5407 10 6189 8 20259 9 10321 10 17685 10 543.2 1832 2375 76466 7935
ii32 17 16 11063 16 11187 17 9492.6 17 4.94 15 20598 16 399.8 10028 10428 49616 11531
ii8 14 14 2.98 14 2.75 14 8.79 14 7.99 14 1.04 14 207.9 0.74 209 25396 2749
jnh 50 50 5.08 20 6.58 50 6.48 50 8.51 50 27.62 50 395.3 31.9 427 25952 22701
par16 10 10 21652 10 20470 8 27708 9 21855 10 2536 10 65.8 1477 1543 4789 879
par8 10 10 0.19 10 0.21 10 0.22 10 0.22 10 0.21 10 11.8 0.22 12 1613 436
pret 8 8 0.72 8 0.68 8 0.7 8 0.66 8 0.59 8 3.94 0.52 4.5 865 138
ssa 8 8 97.33 8 12.63 8 3.73 8 2.44 6 20001 8 161 5.38 166 6104 768

Θ Nlog
2

N()
Θ N()

15

Although not presented in the tables of results, we tested the given benchmarks us-
ing the SATO SAT solver [35]. SATO implements an intelligent dynamic decision heu-
ristic and was able to solve the given DIMACS benchmarks in approximately 45,000
seconds (4 instances timed-out after 10,000 seconds) as opposed to 16,200 seconds us-
ing GRASP with recursive bisection ordering. However, for some instances, SATO was
faster. MINCE failed to generate effective variable-orderings for these instances, since
most of them were not structured.

Our preliminary experiments with the recently published Chaff SAT solver [21] in-
dicate that MINCE is not helpful on most standard benchmarks. This, in part, is due
to the highly optimized implementation of Chaff, but is also explained by the relative
simplicity of the instances. Indeed, if an instance of an NP-complete problem is solved
in near-linear time by a generic algorithm, this instance must be easy. Note, however,
that while the worst-case complexity of both GRASP and Chaff is exponential, MINCE
always runs in near-linear time, perhaps with a greater constant. Finally, even when
MINCE’s runtime makes it prohibitively expensive for a particular SAT instance
where it reduces a solver’s runtime, capturing the instance structure may lead to a
better understanding and be useful for practical purposes.

CNF to BDD Experiment: Table III and Table IV show the BDD construction
runtimes for circuit consistency functions of the ISCAS89 circuit benchmarks. Note
that this is not representative of symbolic state traversal, but is a standard experi-
mental procedure for evaluating BDD packages [15]. The table shows runtimes (sec)
and the BDD sizes, which represent the maximum number of seen nodes (K) at any
point during the construction of the BDD, using the original, original with sifting,
MINCE, and MINCE with sifting variable orderings, respectively. In addition, for
each variable ordering, three clause orderings heuristics are used: original, bottom-up,
MINCE min-cut clause order. Clearly, the MINCE variable ordering leads to faster
and smaller BDDs. In terms of circuits, this can be explained by MINCE ordering the
gates to minimize the “total length of wires”. Using the original clause ordering,
MINCE enabled the BDD construction for all 16 ISCAS89 circuits as opposed to only
10 with sifting and 1 with a original variable-ordering. MINCE’s variable ordering

TABLE II: GRASP runtimes for selected benchmarks from the DIMACS set
and the n-queens problem.

Selected
Instances

MSTS
Time

MSOS
Time

DLCS
Time

DLIS
Time

Original
Time

MINCE
Order + Solve = Total

aim100-2_0-no-2 0.04 0.02 0.01 0.01 0.01 0.72 0.01 0.73
bf0432-007 1.72 3.85 1.74 1.48 10K 7.34 1.6 8.94
hanoi4 4.54 2267 10K 10K 1.75 8.8 1.66 10.5
hole8 6879 10K 140 70.3 61 0.44 6.44 6.88
hole9 10K 10K 1556 752 623 0.53 52.8 53.3
hole10 10K 10K 10K 8637 5597 1.94 599 601
ii16b1 174 217 10K 10K 4840 90.7 0.47 91.2
ii16b2 133 153 71.3 238 5507 53.2 1.38 54.6
ii32c4 650 696 24.9 1.24 10K 84.3 6.11 90.4
par16-2-c 1321 1325 2469 3570 184 3.16 110 113
par16-5 7329 7348 315 10K 111 11.3 14.4 25.7
pret150_25 0.15 0.13 0.14 0.12 0.12 0.62 0.14 0.76
ssa0432-003 0.04 0.04 0.06 0.05 0.06 1.91 0.03 1.94
ssa2670-141 95.2 9.78 2.15 1.1 10K 6.9 1.41 8.3
Nqueens-20 482 1485 23 24.9 3160 40 0.31 40.3
Nqueens-25 10K 10K 178 183 94.9 93 0.79 93.4
Nqueens-30 10K 10K 5233 5402 10K 217 2.27 219
Nqueens 35 10K 10K 10K 10K 10K 317 1 06 318

16

TABLE III: Statistics for constructing the BDDs of the ISCAS89 CNF Benchmarks
without Si fting. Size represents the maximum size (in thousands of nodes) during the

construction of the BDD.

Var. Order Original MINCE MINCE
Clause Order Original Bottom-Up MINCE Original Bottom-Up MINCE VAR CL

Instance Time Size Time Size Time Size Time Size Time Size Time Size Time Time

s27 0.08 181 0.13 256 0.12 181 0.09 73 0.06 89 0.13 73 0.26 0.25
s208.1 time-out out-of-mem 148 1.1M 0.54 2388 0.18 1289 0.29 1313 0.59 0.86
s298 time-out out-of-mem 646 6.9M 1.27 8213 1.16 13K 3.44 9574 0.61 1.27
s344 out-of-mem out-of-mem time-out 11.6 25K 1.28 18K 1.43 11K 0.92 1.57
s349 time-out out-of-mem time-out 6.14 17K 1.2 16K 4.75 11K 0.89 1.5
s382 out-of-mem out-of-mem time-out 6.71 29K 1.12 19K 6.59 15K 0.8 1.65
s386 out-of-mem out-of-mem 116.72 365K 79.6 353K 11.6 109K 5.48 24K 1.23 1.64
s400 out-of-mem out-of-mem out-of-mem 4.02 12K 1.47 8981 2.28 9229 1.12 1.81
s420 out-of-mem out-of-mem time-out 4.32 18K 1.08 7345 4.05 7553 0.92 1.87
s444 out-of-mem out-of-mem time-out 3.76 11K 1.84 13K 2.28 10K 0.9 1.7
s510 time-out out-of-mem time-out time-out 8.95 50K 321 2.3M 2.95 2.13
s526 out-of-mem out-of-mem time-out 29.5 59K 4.63 34K 11.4 58K 1.29 2.44
s526n out-of-mem out-of-mem time-out 9.88 24K 4.51 31K 18.4 24K 1.66 2.11
s641 out-of-mem time-out time-out 186 260K 42.4 228K 60.6 390K 1.63 3.02
s713 out-of-mem time-out time-out 107 267K 32 161K 181 167K 1.79 3.2
s832 out-of-mem out-of-mem time-out time-out time-out 120 172K 6.71 3.64
s838 out-of-mem out-of-mem time-out 25.7 54K 19 88K 36 45K 1.96 3.77
s838.1 out-of-mem out-of-mem out-of-mem 85.4 93K 3.67 14K 38 15K 2.29 4.17
s953 time-out out-of-mem time-out time-out 408 1.8M time-out 2.65 3.88
s1196 out-of-mem out-of-mem time-out time-out 358 2M time-out 4.7 5.9
s1238 out-of-mem out-of-mem time-out time-out 556 2M time-out 4.9 5.6

Total 0.08 181 0.13 256 911 8.4M 562 1.2M 1457 6.5M 818 3.3M 40.5 53.7
#Built 1 1 4 16 20 18

TABLE IV: Statistics for constructing the BDDs of the ISCAS89 CNF Benchmarks
with Sifting

Var. Order Original MINCE MINCE
Clause Order Original Bottom-Up MINCE Original Bottom-Up MINCE VAR CL

Instance Time Size Time Size Time Size Time Size Time Size Time Size Time Time

s27 0.07 181 0.13 256 0.07 181 0.08 73 0.07 89 0.08 73 0.26 0.25
s208.1 14.7 6420 24 8137 2.75 2185 1.18 2385 0.18 1289 0.24 1313 0.59 0.86
s298 47 28K 565 295K 5.66 5007 22 10K 7.76 9981 13.9 16K 0.61 1.27
s344 524 130K time-out 7.8 6454 479 88K 9.9 8720 8.09 8437 0.92 1.57
s349 268 83K time-out 8.25 5913 215 75K 6.05 9241 9.97 9738 0.89 1.5
s382 158 88K 272 118K 9.85 7564 82 37K 11.2 8303 3.79 4436 0.8 1.65
s386 256 97K 403 131K 19.1 11K 232 99K 47.2 22K 21.9 14K 1.23 1.64
s400 564 194K 330 68K 8.24 6858 76 24K 7.64 6845 33.1 18K 1.12 1.81
s420 361 94K time-out 12.5 7419 876 420K 6.63 6902 18.9 12K 0.92 1.87
s444 252 85K time-out 10.5 7515 500 188K 9.45 6557 10 12K 0.9 1.7
s510 time-out time-out 220 141K time-out 51.1 18K 89 46K 2.95 2.13
s526 time-out time-out 28.3 17K time-out 26.5 19K 43.8 18K 1.29 2.44
s526n time-out time-out 19.6 11K time-out 26 14K 22.3 10K 1.66 2.11
s641 time-out time-out 283 78K time-out 386 96K time-out 1.63 3.02
s713 time-out time-out 568 132K time-out 484 127K 467 127K 1.79 3.2
s832 time-out time-out time-out time-out time-out 498 115K 6.71 3.64
s838 time-out time-out 258 64K time-out 181 35K 269 73K 1.96 3.77
s838.1 time-out time-out 97.2 17K time-out 78 14K 70 19K 2.29 4.17
s953 time-out time-out time-out time-out time-out time-out 2.65 3.88
s1196 time out time out time out time out time out time out 4 7 5 9

→
→

→
→

17

time is negligible in most cases. MINCE reduced the average variable cut for the
ISCAS89 circuits from 200 to 26.

In addition, combining the bottom-up or MINCE clause ordering heuristics with
MINCE variable ordering allows the construction of more circuits as opposed to using
the original clause ordering. This is justified by the fact that, sorting the clauses helps
in localizing the BDD manipulations to specific levels of the BDD and keeps the BDD
depth as small as possible which helps in achieving better BDD construction runtime
and memory results. The tables also clearly show that enabling sifting will, in general,
produce BDDs with a fewer number of nodes, but will require an extra overhead in
runtime. Despite the fact that our tables show a higher number of instances solved
without sifting, we believe most instances will be solved with sifting given a longer
runtime limit. When comparing the bottom-up with MINCE clause ordering heuristic,
bottom-up is successful in constructing more circuits than MINCE, however for some
instances, such as the , MINCE is able to build the BDD whereas the bottom-up
approach fails. We should note that MINCE is a randomized algorithm. Different runs
can produce different clause orderings which can lead to better solutions. On average,
the new clause ordering heuristics combined with MINCE variable ordering are able
to obtain significant performance improvement in comparison with the original vari-
able and clause orderings. The technique is simple and easy to use in practice. Its stat-
ic nature allows for a variety of applications where dynamic approaches fail.

Circuit to BDD Experiment: Table V and Table VI summarize the runtime and
memory results for the third set of experiments which construct BDDs for the PO func-
tions of the ISCAS85 circuits in terms of their PIs. In both tables, the columns repre-
sent the original, BFS, DFS, Fujita [11], Malik-level [19], Malik-fanin [19], and
MINCE orderings using the Circuit HG and the Dual HG, respectively. The tables also
include the runtime needed by CAPO to generate the gate orderings. As the data clear-
ly illustrate, FUJ and MAL-fan successfully construct the most number of circuits
among the previous 6 PI ordering heuristics. However, in the non-sifting case, circuit
HG and Dual HG orderings are yet able to construct more BDDs than all other ap-
proaches. Out of 11 ISCAS85 benchmarks, circuit HG and Dual HG constructed 9 and
10 BDDs, respectively, as opposed to 8 BDDs by FUJ and MAL-fan. Furthermore, the
Dual HG model was successful in solving more instances, using smaller runtimes and
BDD nodes, than the Circuit HG model. This can be attributed to fact that construct-
ing the BDD for a gate’s output is heavily dependent on the gate’s inputs which are
ordered more closely using the Dual HG model. When comparing the results with sift-
ing, the Dual HG model does not perform as fast as the MAL-fan, but it does utilize
fewer BDD nodes. As discussed earlier, building BDDs with sifting generally uses few-
er BDD nodes but requires more runtime. This can be illustrated by our results with
the Dual HG model, where all 10 instances were solved in 21 seconds without sifting
as opposed to 140 seconds with sifting. On the other hand, the total BDD size is only
33K nodes for the sifting experiment, whereas it needs 211K nodes in the non-sifting
experiment. We believe the proposed static ordering should be very effective with ap-
plications that do not allow dynamic sifting. We are currently looking into further im-
proving the performance by running multiple independent starts of MINCE. The main
advantage of our approach is the use of circuit structure detected by global min-cut
partitioning and placement algorithms with near-linear worst-case runtime.

s832

18

6 Conclusions and Future Work

Our work proposes a static variable-ordering heuristic MINCE for CNF formulae
with applications to SAT and BDDs. The main advantage of this heuristic is its very
good performance on standard benchmarks in terms of implied runtime of SAT solvers
as well as memory/runtime of BDD primitives. We believe that this is due to the fact
that the proposed variable-ordering is global and relies on high-performance hyper-
graph partitioning and placement (MLPart [7] and CAPO [8]). Unlike problem-specific
dynamic variable-ordering heuristics, such as DLCS, DLIS, and variable-sifting,
MINCE can be implemented once and used for different applications without modify-
ing the application code. Given that MINCE shows strong improvements in seemingly
unrelated applications (SAT and BDD) and for a wide variety of standard benchmarks,
we believe that it is able to capture structural properties of CNF instances and cir-
cuits. We show that when “connected” variables, clauses, or gates are ordered next to
each other, SAT and BDD operations can achieve better performance. For example,

TABLE V: Statistics for constructing the BDDs of the ISCAS85 Circuits
without Sifting

Inst-
ance

Original BFS DFS FUJ MAL-Lev MAL-Fan
MINCE

CAPO Circuit HG Dual HG
Time Size Time Size Time Size Time Size Time Size Time Size Time Time Size Time Size

c17 0 7 0 7 0 7 0 7 0 7 0 5 0.21 0 6 0.01 6
c432 0.03 523 1.4 9199 0.75 6625 0.76 6625 0.76 6625 0.83 6880 0.66 0.04 733 0.04 777
c499 0.42 4945 0.72 7203 0.4 6100 0.4 6092 0.4 6100 0.35 5804 1.72 0.5 3405 0.35 4317
c880 6.37 111K 10.5 368K 9.15 245K 9.11 245K 8.47 212K 9.76 220K 1.48 2.86 83K 0.17 5696
c1355 1.12 4945 2.43 6255 1.1 6100 1.09 6092 1.1 6100 0.99 5804 1.89 1.65 4581 1.12 3390
c1908 0.84 8519 0.35 2437 0.51 4808 0.52 4808 0.44 4790 0.5 4837 3 0.73 3459 0.9 7905
c2670 out-of-mem 44.9 5.1M 42.1 4.9M 37.6 4.4M 31.5 3.7M 27.7 2.9M 4.99 2.63 101K 1 23K
c3540 24.6 329K out-of-mem 205 2M 197 2M 191 1.8M 162 1.6M 7.72 out-of-mem 14.4 118K
c5315 out-of-mem out-of-mem time-out time-out out-of-mem time-out 11.3 2.13 15K 2.05 40K
c6288 out-of-mem out-of-mem out-of-mem out-of-mem out-of-mem out-of-mem 9.53 out-of-mem out-of-mem
c7552 out-of-mem out-of-mem out-of-mem out-of-mem out-of-mem out-of-mem 16.3 4.8 39K 1.71 6682

Total 33.4 459K 60.4 5.5M 258 7M 247 6.6M 233 5.6M 202 4.7M 58.8 15.3 251K 21 211K
#Built 7 7 8 8 8 8 9 10

TABLE VI: Statistics for constructing the BDDs of the ISCAS85 Circuits
with Sifting

Inst-
ance

Original BFS DFS FUJ MAL-Lev MAL-Fan
MINCE

CAPO Circuit HG Dual HG
Time Size Time Size Time Size Time Size Time Size Time Size Time Time Size Time Size

c17 0 7 0 7 0 7 0 7 0 7 0 5 0.21 0.01 6 0.01 6
c432 0.26 386 1.08 1715 0.8 450 0.81 450 0.8 450 1.16 566 0.66 0.27 411 0.25 541
c499 12.1 3957 12.1 5030 12.4 4483 13.5 4131 12.5 4483 12.2 4836 1.72 20.4 3661 10.2 2609
c880 4.43 8176 11.7 10K 4.07 3213 4.08 3213 2.37 3433 3.84 2852 1.48 12.6 36K 1.96 2411
c1355 45.5 4649 112 6862 64.5 4098 42.5 4019 64.4 4098 34.3 4451 1.89 46.8 3285 58.8 2397
c1908 5.17 1835 6.67 1721 7.51 2327 7.54 2327 8.95 3147 5.43 1645 3 6.36 1669 9.1 2444
c2670 7.51 2142 7.13 3079 11.4 7099 8.08 10K 13.7 12K 8.89 8178 4.99 7.43 4212 6 2385
c3540 55.3 15K 25 14K 25 14K 25.1 14K 25.7 14K 27.1 11K 7.72 50 16K 27.2 11K
c5315 3.34 791 3.68 2518 4.4 1821 3.94 2077 3.86 2077 4.21 823 11.3 2.87 2391 2.96 1627
c6288 time-out time-out time-out time-out time-out time-out 9.53 time-out time-out
c7552 26 3450 23.8 6178 24.3 6267 24.3 6267 28 5890 32 4133 16.3 14.8 2160 23.6 8132

19

when a CNF formula is created from a circuit, it is not difficult to see that MINCE es-
sentially performs recursive partitioning and linear placement of this circuit, and then
orders variables so that respective circuit elements are located near each other on av-
erage. One particular example is shown in Figure 8 where cut-profiles of a particular
circuit-derived CNF instance with the original and MINCE variable orderings are
compared (a clause is “cut” by all variables ordered between its left- and right-most

0

100

200

300

400

500

600

50 100 150 200 250 300 350 400 450 500

V
ar

ia
bl

e
C

ut

Variables

0

50

100

150

200

250

300

350

0 200 400 600 800 1000 1200

C
la

us
e

C
ut

Clauses

0

10

20

30

40

50

60

70

50 100 150 200 250 300 350 400 450 500

V
ar

ia
bl

e
C

ut

Variables

0

5

10

15

20

25

0 200 400 600 800 1000 1200

C
la

us
e

C
ut

Clauses

0

2000

4000

6000

8000

10000

12000

14000

16000

0 200 400 600 800 1000 1200 1400

V
ar

ia
bl

e
C

ut

Variables

0

200

400

600

800

1000

1200

1400

1600

1800

0 200 400 600 800 1000 1200 1400

V
ar

ia
bl

e
C

ut

Variables

Fig. 8. Cutwidth profiles for the circuit hypergraph of the ISCAS89 s838 instance using the Original
and MINCE variable order for the (a-b) CNF hypergraph (c-d) Dual CNF hypergraph.

Cutwidth profile for the 9symml_gr_rcs_w5 FPGA routing instance using the Original and MINCE
variable order for the CNF hypergraph (e-f)

(a) (b)

(c) (d)

(e) (f)

20

variables). More significantly, MINCE reduces all cuts and exposes design hierarchy
of the original circuit. Figure 8 also shows the cutwidth profile for the original and
MINCE variable orderings of an FPGA routing instance. Interestengly, the five vari-
able clusters in Figure 8(f) represent a one-to-one correspondence with the routing
tracks in the FPGA interconnect fabric. In general, this technique should have better
impact on BDDs, since they are more sensitive to variable-ordering than SAT. SAT
solvers can reduce the damage incurred by a bad variable-ordering using the addition
of conflict-induced clauses (a conflict clause connects literals of related variables even
if they are very far from each other in the ordering).

We note that our use of a finely-tuned standard-cell placer CAPO results in better
average cuts and clause spans than one expects from a “vanilla” recursive bisection
(e.g., as commonly implemented with hMetis). This black-box software reuse is en-
abled by the pure preprocessing nature of the proposed techniques (we use GRASP as
a black-box too). We hope that this will also enable its easy evaluation and adoption in
the industry.

Our on-going work addresses additional types of benchmarks, better justifications of
the MINCE heuristic and also analyses of the cases when it fails to produce near-best
variable-orderings. An important research question is to account for polarities of liter-
als. We are aware of work conducted in [32] which is similar to ours. Our colleagues
use hMetis, modify the source-code of GRASP and attempt to account for polarities of
literals by post-processing. Comparisons of preliminary results show that MINCE is
surprisingly successful without using polarities of literals. We are also looking into
further improving the runtimes by detecting symmetries in the problem’s structure. A
public-domain implementation of MINCE is available at http://andan-
te.eecs.umich.edu/mince.

7 Acknowledgments

This work is funded by the DARPA/MARCO Gigascale Silicon Research Center. Pre-
liminary results of this work were reported at IWLS 2001 and ICCAD 2001. We thank
participants and reviewers at IWLS and ICCAD for many valuable suggestions that
helped improve this paper.

8 References

[1] F. Aloul, I Markov, and K. Sakallah, “Faster SAT and Smaller BDDs via Common
Function Structure,” in Proc. International Conference on Computer Aided Design
(ICCAD), 2001.

[2] C. Berman, “Circuit Width, Register Allocation, and Ordered Binary Decision
Diagrams,” in IEEE Transactions on Computer Aided Design, 10(8), 1991.

[3] A. Biere, A. Cimatti, E. M. Clarke, M. Fujita, and Y. Zhu, “Symbolic Model Check-
ing using SAT procedures instead of BDDs,” in Proc. Design Automation Confer-
ence (DAC), 1999.

[4] F. Brglez, D. Bryan, and K. Kozminski, “Combinational problems of sequential
benchmark circuits,” in Proc. International Symp. on Circuits and Systems, 1989.

[5] F. Brglez, and H. Fujiwara, “A neutral netlist of 10 combinational benchmark cir-
cuits and a target translator in FORTRAN,” in Proc. International Symposium on
Circuits and Systems, 1985.

21

[6] R. Bryant, “Graph-based algorithms for Boolean function manipulation,” in IEEE
Transactions on Computers, 35(8), 1986.

[7] A. Caldwell, A. Kahng, and I. Markov, “Can Recursive Bisection Produce
Routable Placements?” in Proc. Design Automation Conference (DAC), 2000.

[8] A. Caldwell, A. Kahng, and I. Markov, “Improved Algorithms for Hypergraph
Bipartitioning,” in Proc. of the IEEE ACM Asia and South Pacific Design Automa-
tion Conference, 2000.

[9] R. Drechsler and B. Becker, “Binary Decision Diagrams, Theory and Implementa-
tion,” Kluwer Academic Publishers, 1998.

[10]DIMACS Challenge benchmarks in ftp://Dimacs.rutgers.EDU/pub/challenge/
sat/benchmarks/cnf.

[11]M. Fujita, H. Fujisawa, and N. Kawato, “Evaluation and Improvements of Bool-
ean Comparison Method Based on Binary Decision Diagrams,” in Proc. Interna-
tional Conference on Computer Aided Design (ICCAD), 1988.

[12]C. Gomes, B. Selman, and H. Kautz, “Boosting Combinatorial Search Through
Randomization,” in Proc. National Conference on Artificial Intelligence (AAAI),
1998.

[13]G. Hachtel and F. Somenzi, “Logic Synthesis and Verification Algorithms,” Klu-
wer, 3rd ed., 2000.

[14]S. Hur and J. Lillis, “Relaxation and clustering in a local search framework:
application to linear placement,” in Proc. Design Automation Conference (DAC),
1999.

[15]G. Janssen, “Design of a Pointerless BDD Package,” in International Workshop
on Logic Synthesis (IWLS), 2001.

[16]G. Karypis, R. Aggarwal, V. Kumar, and S. Shekhar, “Multilevel Hypergraph
Partitioning: Applications in VLSI Design,” in Proc. Design Automation Conf.
(DAC), 1997.

[17]T. Larrabee, “Test Pattern Generation Using Boolean Satisfiability,” IEEE
Transactions on Computer-Aided Design, 11(1), 1992.

[18]Y. Lu, J. Jain, and K. Takayama, “BDD Variable Ordering Using Window-based
Sampling,” in International Workshop on Logic Synthesis (IWLS), 2000.

[19]S. Malik, A. Wang, R. Brayton, and A. Sangiovanni-Vincentelli, “Logic Verifica-
tion using Binary Decision Diagrams in a Logic Synthesis Environment,” in Proc.
International Conference on Computer Aided Design (ICCAD), 1988.

[20]S. Minato, N. Ishiura, and S.Yajima, “Shared binary decision diagrams with
attributed edges for efficient Boolean function manipulation,” in Proc. Design
Automation Conf. (DAC), 1990.

[21]M. Moskewicz, C. Madigan, Y. Zhao, L. Zhang, and S. Malik, “Chaff: Engineering
an Efficient SAT Solver,” in Proc. Design Automation Conference (DAC), 2001.

[22]G. Nam, F. Aloul, K. Sakallah, and R. Rutenbar, “A Comparative Study of Two
Boolean Formulations of FPGA Detailed Routing Constraints,” in Proc. Interna-
tional Symposium on Physical Design (ISPD), 2001.

[23]S. Panda and F. Somenzi, “Who are the variables in your neighborhood,” in Proc.
International Conference on Computer Aided Design (ICCAD), 1995.

[24]M. Prasad, P. Chong, and K. Keutzer, “Why is ATPG easy?” in Proc. Design Auto-
mation Conference (DAC), 1999.

[25]R. Rudell, “Dynamic variable ordering for ordered binary decision diagrams,” in
Proc. International Conference on Computer Aided Design (ICCAD), 1993.

22

[26]J. Marques-Silva and K. Sakallah, “Robust Search Algorithms for Test Pattern
Generation,” in Proc. IEEE Fault-Tolerant Computing Symposium, 1997.

[27]J. Silva and K. Sakallah, “GRASP-A New Search Algorithm for Satisfiability,” in
Proc. International Conference on Computer Aided Design (ICCAD), 1996.

[28]L. Silva, J. Silva, L. Silveira, and K. Sakallah, “Timing Analysis Using Proposi-
tional Satisfiability,” in IEEE International Conference on Electronics, Circuits
and Systems, 1998.

[29]F. Somenzi, “Colorado University Decision Diagram package,” http://vlsi.colo-
rado.edu/~fabio/CUDD, 1997.

[30]G. Stalmarck, “System for Determining Propositional Logic Theorems by Apply-
ing Values and Rules to Triplets that are Generated from Boolean Formula,”
United States Patent no. 5,276,897, 1994.

[31]P. R. Stephan, R. K. Brayton, and A. L. Sangiovanni-Vincentelli, “Combinational
Test Generation Using Satisfiability,” in IEEE Transactions on Computer-Aided
Design, 1996.

[32]D. Wang and E. Clarke, “Efficient Formal Verification through Cutwidth,” in
IEEE International High Level Design Validation and Test Workshop (HLDVT),
2001.

[33]R. Wood and R. Rutenbar, “FPGA Routing and Routability Estimation Via Bool-
ean Satisfiability,” in IEEE Transactions on VLSI, 6(2), 1998.

[34]C. Yang and M. Ciesielski, “BDS: A BDD-Based Logic Optimization System,” in
Proc. Design Automation Conference (DAC), 2000.

[35]H. Zhang, “SATO: An Efficient Propositional Prover,” in International Conference
on Automated Deduction, 1997.

