
SAT-Solving: From Davis-
Putnam to Zchaff and Beyond

Day 2: Efficient SAT Solving

Lintao Zhang

Lintao Zhang

Davis Logemann Loveland
Algorithm Framework

while(1) {
if (decide_next_branch()) { //Branching

while(deduce()==conflict) { //Deducing
blevel = analyze_conflicts();
if (blevel < 0)

return UNSAT;
else back_track(blevel); //Backtracking

}
else //no branch means all variables got assigned.

return SATISFIABLE;
}

Lintao Zhang

Chronological Backtracking
Backtracking to the highest decision level that has not been
tried with both values
Originally proposed in the DLL paper in 1962
OK for randomly generated instances, bad for instances
generated in practical applications
We can do better than that

Lintao Zhang

Conflict Driven Learning and Non-
Chronological Backtracking

Marques-Silva and Sakallah [SS96,SS99]
J. P. Marques-Silva and K. A. Sakallah, "GRASP -- A New Search
Algorithm for Satisfiability,“ Proc. ICCAD 1996.
J. P. Marques-Silva and Karem A. Sakallah, “GRASP: A Search Algorithm
for Propositional Satisfiability”, IEEE Trans. Computers, C-48, 5:506-521,
1999.

Bayardo and Schrag’s RelSAT also proposed conflict driven
learning [BS97]
R. J. Bayardo Jr. and R. C. Schrag “Using CSP look-back techniques to
solve real world SAT instances.” Proc. AAAI, pp. 203-208, 1997
Practical SAT instances can be solved in reasonable time

Lintao Zhang

Conflict Driven Learning and
Non-chronological Backtracking
x1 + x4
x1 + x3’ + x8’
x1 + x8 + x12
x2 + x11
x7’ + x3’ + x9
x7’ + x8 + x9’
x7 + x8 + x10’
x7 + x10 + x12’

Lintao Zhang

Conflict Driven Learning and
Non-chronological Backtracking
x1 + x4
x1 + x3’ + x8’
x1 + x8 + x12
x2 + x11
x7’ + x3’ + x9
x7’ + x8 + x9’
x7 + x8 + x10’
x7 + x10 + x12’

x1 x1=0

x1=0

Lintao Zhang

Conflict Driven Learning and
Non-chronological Backtracking
x1 + x4
x1 + x3’ + x8’
x1 + x8 + x12
x2 + x11
x7’ + x3’ + x9
x7’ + x8 + x9’
x7 + x8 + x10’
x7 + x10 + x12’

x1 x1=0, x4=1

x4=1

x1=0

Lintao Zhang

Conflict Driven Learning and
Non-chronological Backtracking
x1 + x4
x1 + x3’ + x8’
x1 + x8 + x12
x2 + x11
x7’ + x3’ + x9
x7’ + x8 + x9’
x7 + x8 + x10’
x7 + x10 + x12’

x1 x1=0, x4=1

x3 x3=1

x4=1

x3=1x1=0

Lintao Zhang

Conflict Driven Learning and
Non-chronological Backtracking
x1 + x4
x1 + x3’ + x8’
x1 + x8 + x12
x2 + x11
x7’ + x3’ + x9
x7’ + x8 + x9’
x7 + x8 + x10’
x7 + x10 + x12’

x1 x1=0, x4=1

x3 x3=1, x8=0

x4=1

x3=1

x8=0

x1=0

Lintao Zhang

Conflict Driven Learning and
Non-chronological Backtracking
x1 + x4
x1 + x3’ + x8’
x1 + x8 + x12
x2 + x11
x7’ + x3’ + x9
x7’ + x8 + x9’
x7 + x8 + x10’
x7 + x10 + x12’

x1 x1=0, x4=1

x3 x3=1, x8=0, x12=1

x4=1

x12=1

x3=1

x8=0

x1=0

Lintao Zhang

Conflict Driven Learning and
Non-chronological Backtracking
x1 + x4
x1 + x3’ + x8’
x1 + x8 + x12
x2 + x11
x7’ + x3’ + x9
x7’ + x8 + x9’
x7 + x8 + x10’
x7 + x10 + x12’

x1

x3

x2

x1=0, x4=1

x3=1, x8=0, x12=1

x2=0

x4=1

x12=1

x3=1

x8=0

x1=0

x2=0

Lintao Zhang

Conflict Driven Learning and
Non-chronological Backtracking
x1 + x4
x1 + x3’ + x8’
x1 + x8 + x12
x2 + x11
x7’ + x3’ + x9
x7’ + x8 + x9’
x7 + x8 + x10’
x7 + x10 + x12’

x1

x3

x2

x1=0, x4=1

x3=1, x8=0, x12=1

x2=0, x11=1

x4=1

x12=1

x3=1

x8=0

x1=0

x2=0

x11=1

Lintao Zhang

Conflict Driven Learning and
Non-chronological Backtracking
x1 + x4
x1 + x3’ + x8’
x1 + x8 + x12
x2 + x11
x7’ + x3’ + x9
x7’ + x8 + x9’
x7 + x8 + x10’
x7 + x10 + x12’

x1

x3

x2

x1=0, x4=1

x3=1, x8=0, x12=1

x2=0, x11=1

x7 x7=1x4=1

x12=1

x3=1 x7=1

x8=0

x1=0

x2=0

x11=1

Lintao Zhang

Conflict Driven Learning and
Non-chronological Backtracking
x1 + x4
x1 + x3’ + x8’
x1 + x8 + x12
x2 + x11
x7’ + x3’ + x9
x7’ + x8 + x9’
x7 + x8 + x10’
x7 + x10 + x12’

x1

x3

x2

x1=0, x4=1

x3=1, x8=0, x12=1

x2=0, x11=1

x7 x7=1, x9= 0, 1x4=1
x9=1

x9=0

x12=1

x3=1 x7=1

x8=0

x1=0

x2=0

x11=1

Lintao Zhang

Conflict Driven Learning and
Non-chronological Backtracking
x1 + x4
x1 + x3’ + x8’
x1 + x8 + x12
x2 + x11
x7’ + x3’ + x9
x7’ + x8 + x9’
x7 + x8 + x10’
x7 + x10 + x12’

x1

x3

x2

x7

x3=1∧ x7=1∧ x8=0 → conflict

x1=0, x4=1

x3=1, x8=0, x12=1

x2=0, x11=1

x7=1, x9=1x4=1
x9=1

x9=0

x12=1

x3=1 x7=1

x8=0

x1=0

x2=0

x11=1

Lintao Zhang

Contra-proposition:

If a implies b, then b’ implies a’

x3=1∧ x7=1∧ x8=0 → conflict

Not conflict → (x3=1∧ x7=1∧ x8=0)’

true → (x3=1∧ x7=1∧ x8=0)’

(x3=1∧ x7=1∧ x8=0)’

(x3’ + x7’ + x8)

Lintao Zhang

Conflict Driven Learning and
Non-chronological Backtracking
x1 + x4
x1 + x3’ + x8’
x1 + x8 + x12
x2 + x11
x7’ + x3’ + x9
x7’ + x8 + x9’
x7 + x8 + x10’
x7 + x10 + x12’

x1

x3

x2

x7

Add conflict clause: x3’+x7’+x8

x1=0, x4=1

x3=1, x8=0, x12=1

x2=0, x11=1

x7=1, x9=1x4=1
x9=1

x9=0

x12=1

x3=1 x7=1

x8=0

x1=0

x2=0

x11=1 x3=1∧ x7=1∧ x8=0 → conflict

Lintao Zhang

x1 + x4
x1 + x3’ + x8’
x1 + x8 + x12
x2 + x11
x7’ + x3’ + x9
x7’ + x8 + x9’
x7 + x8 + x10’
x7 + x10 + x12’

Conflict Driven Learning and
Non-chronological Backtracking

x1

x3

x2

x7

x1=0, x4=1

x3=1, x8=0, x12=1

x2=0, x11=1

x7=1, x9=1x4=1
x9=1

x9=0

x12=1

x3=1 x7=1

x8=0

x1=0

x2=0

x11=1

x3’+x7’+x8

Add conflict clause: x3’+x7’+x8

x3=1∧ x7=1∧ x8=0 → conflict

Lintao Zhang

DLL with Non-Chronological
Backtracking and Learning
x1 + x4
x1 + x3’ + x8’
x1 + x8 + x12
x2 + x11
x7’ + x3’ + x9
x7’ + x8 + x9’
x7 + x8 + x10’
x7 + x10 + x12’
x3’ + x8 + x7’

x1

x3

x2

x7

x1=0, x4=1

x3=1, x8=0, x12=1

Backtrack to the decision level of x3=1:
x7 = 0

x4=1

x12=1

x3=1

x8=0

x1=0

x2=0

x11=1

Lintao Zhang

DLL with Non-Chronological
Backtracking and Learning
x1 + x4
x1 + x3’ + x8’
x1 + x8 + x12
x2 + x11
x7’ + x3’ + x9
x7’ + x8 + x9’
x7 + x8 + x10’
x7 + x10 + x12’
x3’ + x8 + x7’

x1

x3

x1=0, x4=1

x3=1, x8=0, x12=1, x7=0

x4=1

x12=1

x3=1

x8=0

x1=0 x7=0

x2=0

x11=1

Lintao Zhang

Efficient Implementation of
SAT Solvers

while(1) {
if (decide_next_branch()) { //Branching

while(deduce()==conflict) { //Deducing
blevel = analyze_conflicts(); //Learning
if (blevel < 0)

return UNSAT;
else back_track(blevel); //Backtracking

}
else //no branch means all variables got assigned.

return SATISFIABLE;
}

Lintao Zhang

Efficient Implementation of
SAT Solvers

while(1) {
if (decide_next_branch()) { //Branching

while(deduce()==conflict) { //Deducing
blevel = analyze_conflicts(); //Learning
if (blevel < 0)

return UNSAT;
else back_track(blevel); //Backtracking

}
else //no branch means all variables got assigned.

return SATISFIABLE;
}

Lintao Zhang

Decision Heuristics
If problem is SAT

Find satisfying assignment quickly
prune spaces where an assignment does not exist quickly

A: try and force a conflict (through implications) quickly
zoom in on the space where the solution exists

B: try and satisfy as many clauses as possible
If problem is UNSAT

Prove unsatisfiability quickly
prune entire space quickly

A: try and force a conflict (through implications) quickly
A, B above are the operational goals
Cost benefit tradeoff

computation cost should not overweigh benefit of search space
reduction

Lintao Zhang

Simple Literal Counting
RAND

pick a literal randomly (no counting!)
Let:

CP(x) be the number of occurrences of x in unresolved clauses
CN(x) be the number of occurrences of x’ in unresolved clauses

DLCS (Dynamic Largest Combined Sum)
Pick variable with largest CP(x) + CN(x) value
if CP(x) ≥ CN (x), set x true, else set x false

DLIS (Dynamic Largest Individual Sum)
Pick variable with largest value or all CP, CN
if CP(x) ≥ CN (x), set x true, else set x false

Randomized DLIS (RDLIS), or RDLCS
select phase of the variable randomly

Lintao Zhang

BOHM’s Heuristic
Select a variable with the maximum vector:
Hi(x) = α max (hi(x), hi(x’)) + β min(hi(x), hi(x’))

hi(x): number of unresolved clauses of size i (remaining literals)
with literal x in them
α, β selected by experimentation (suggested values 1, 2)
vectors compared in lexicographic order from left to right

Intuition:
each selected literal gives preference to:

satisfying small clauses (when assigned true)
further reducing the size of small clauses when assigned false

Lintao Zhang

MOM’s Heuristic
Maximum Occurrence’s in Clauses of Minimum Size
Select the literal that maximizes the function:
[f*(x) + f*(x’)]*2k + f*(x) ∗ f*(x’)

f*(l): Number of occurences of l in the smallest non-satisfied
clauses
k is a tuning parameter

Intuition: Preference is given to clauses:
with a large number of occurences of either x or x’ in them
and also variables that have a large number of clauses of both
phases of x in them
focus on the currently smallest size clauses

Lintao Zhang

Jeroslow-Wang Heuristics
For a given literal l compute:
J(l) = ∑ 2 -|ω| Sum over all clause ω where l is in
One sided Jeroslow-Wang (JW-OS)

select the literal with the highest value of J
Two-sided Jeroslow-Wang (JW-TS)

select the variable with the highest value of (J(x) + J(x’))
if J(x) ≥ J(x’) set x true, else set x false

Intuition:
Weight occurrences in small clauses higher

Lintao Zhang

Decision Heuristics –
Conventional Wisdom

DLIS is typical of common dynamic decision heuristics
Simple and intuitive

At each decision simply choose the assignment that satisfies the most
unsatisfied clauses.

However, considerable work is required to maintain the statistics necessary
for this heuristic – for one implementation:

Must touch every clause that contains a literal that has been set to true.
Maintain “sat” flag for each clause. When the flag transition 0 1, update
rankings.
Need to reverse the process for unassignment.

The total effort required for this and similar decision heuristics is much more
than that for BCP.

Still based on static statistics in the sense that it does not take search
history into consideration

The next decision will be determined by the current clause database and
search tree, regardless of how you reach current state,

Lintao Zhang

Static Statistics are not
Enough

We should differentiate learned clauses with the original
clauses
Why does the search process arrive in current state? There
are some insight that we can leverage
How to use dynamic information to guide search in the future?

Lintao Zhang

Chaff Decision Heuristic -
VSIDS

Variable State Independent Decaying Sum (VSIDS)
Choose literal that has the highest score to branch
Initial score of a literal is its literal count in the initial clause database
Score is incremented (by 1) when a new clause containing that literal is
added.
Periodically, divide all scores by a constant.

VSIDS is semi-static because it does not change as variables get
assigned/unassigned

Scores are much cheaper to maintain

VSIDS is based on dynamic statistics because it take search history
into consideration

Much more robust, highly effective in real world benchmarks

Lintao Zhang

Decision Heuristic of BerkMin
Literal score is incremented when the literal is involved in
conflict clause generation
Branch on free variables that are in the last unresolved
learned clause with highest score
It has similar property as VSIDS but seems to be more robust
and more effective

Lintao Zhang

Efficient Implementation of
SAT Solvers

while(1) {
if (decide_next_branch()) { //Branching

while(deduce()==conflict) { //Deducing
blevel = analyze_conflicts(); //Learning
if (blevel < 0)

return UNSAT;
else back_track(blevel); //Backtracking

}
else //no branch means all variables got assigned.

return SATISFIABLE;
}

Lintao Zhang

Boolean Constraint
Propagation (BCP)

After setting a variable to a constant value, propagate the effect of
the assignment

Find out all the unit clauses
Detect conflicts

Backtrack: the reverse of BCP
when a variable is unassigned, how to unset a variable.

BCP takes the major part of the run time of a DLL SAT solver
Different implementation schemes for BCP may have significant
effect on the efficiency of the solver

Lintao Zhang

Literal Counting Scheme
Each variable keeps a list of all its occurrence in the clauses, both in
positive and negative form.
Each clause maintains counters to indicate its status (number of
1/0/- assignments).
When a variable is assigned, it will visit all the clauses that contain it
and modify the status counters.
When a variable is unassigned, it will also need to reverse the
modification it did to the clauses.

Lintao Zhang

Literal Counting as in GRASP
Each clause maintains two counters:

Num_1_Lits
Num_0_Lits
Num_all_Lits (This is not a counter, just a constant)

A Clause is unit if
(Num_0_Lits == Num_all_Lits – 1) && Num_1_Lits == 0
If this is true, solver needs to search through all the literals of the clause to find out the
remaining free literal

A Clause is a conflict clause if
Num_0_Lits == Num_all_Lits

A SAT instance with n variables, m clauses, each clause has l literals on the
average:

A variable assignment/unassignment takes l m / n operations on the average
A Clause is SAT if

Num_1_Literals > 0
This is a constant time operation

Lintao Zhang

A Better Literal Counting
Scheme

Each clause keeps one counter
Num_Non_Zero_Literals

A Clause is Unit if
Num_Non_Zero_Literals == 1
And, the solver will search all the literals in the clause to find out the remaining literal
with value other than 0, if it’s unassigned, then it is implied. Otherwise, skip this clause.

A Clause is Conflict if
Num_Non_Zero_Literals == 0

A SAT instance with n variables, m clauses, each clause has l literals on the
average:

A variable assignment/unassignment takes l m / 2n operations on the average
A Clause is SAT if

Search all the literals in the clause to find if it has at least one of them with value 1.
This operation complexity is linear wrt the length of the clause

Lintao Zhang

BCP in SATO
There is no need to update the status of a clause whenever a
literal of the clause is getting assigned a value.

not counter based!
Literals of a clause are arranged in a linear array.
Each clause has two pointers.
head pointer points to the first literal from the beginning of the
clause that is either free (unassigned) or has value 1.

If a free head literal was assigned 0, head pointer will be moved
towards the end of the clause to find another literal that satisfy
this criterion.

tail pointer points to the last literal from the end of the clause that
is either free (unassigned) or has value 1,

It will move towards the beginning when assigned value 0.

Lintao Zhang

BCP in SATO
Each variable will keep 4 lists:

positive heads
negative heads
positive tails
negative tails

Whenever a variable gets assigned a value, the corresponding
clauses with it as head or tail literal need to be visited and
modified.
The clause is a unit or a conflict clause when head meets tail
A SAT instance with n variables, m clauses, each clause has l literals
on the average:

A variable assignment/unassignment takes m / n operations on the
average
Each operation may be more expensive than literal counting

Lintao Zhang

BCP in SATO
-V1 V3 V5 V6 -V7

-V1 V4 -V7 V11 V12 V15

-V1 V3 V4

-V8 V14 V51 V61

-V2 -V3 V11 V12 V13 V15

V1

V1

V1 Free Literal

Value 0 Literal

Value 1 Literal

Unit Clause

Tail Pointer

Head Pointer

-V1 V3 V4 Conflict Clause

Lintao Zhang

Chaff BCP Algorithm (1/8)
What “causes” an implication? When can it occur?

All literals in a clause but one are assigned to F
(v1 + v2 + v3): implied cases: (0 + 0 + v3) or (0 + v2 + 0) or (v1 + 0 + 0)

For an N-literal clause, this can only occur after N-1 of the literals have
been assigned to F
So, (theoretically) we could completely ignore the first N-2 assignments
to this clause
In reality, we pick two literals in each clause to “watch” and thus can
ignore any assignments to the other literals in the clause.

Example: (v1 + v2 + v3 + v4 + v5)
(v1=X + v2=X + v3=? {i.e. X or 0 or 1} + v4=? + v5=?)

Lintao Zhang

BCP Algorithm (1.1/8)
Big Invariants

Each clause has two watched literals.
If a clause can become newly implied via any sequence of assignments,
then this sequence will include an assignment of one of the watched
literals to F.

Example again: (v1 + v2 + v3 + v4 + v5)
(v1=X + v2=X + v3=? + v4=? + v5=?)

BCP consists of identifying implied clauses (and the associated
implications) while maintaining the “Big Invariants”

Lintao Zhang

(2 3 1 4 5)

(1 2 -3)

(1 –2)

(-1 4)

(-1)

BCP Algorithm (2/8)
Let’s illustrate this with an example:

Lintao Zhang

BCP Algorithm (2.1/8)
Let’s illustrate this with an example:

(2 3 1 4 5)

(1 2 -3)

(1 –2)

(-1 4)

(-1)

watched
literals

Conceptually, we identify the first two literals in each clause as
the watched ones

Lintao Zhang

BCP Algorithm (2.2/8)
Let’s illustrate this with an example:

(2 3 1 4 5)

(1 2 -3)

(1 –2)

(-1 4)

(-1)

watched
literals

Conceptually, we identify the first two literals in each clause as the watched
ones
Changing which literals are watched is represented by reordering the literals
in the clause (which comes into play later)

Lintao Zhang

BCP Algorithm (2.3/8)
Let’s illustrate this with an example:

(2 3 1 4 5)

(1 2 -3)

(1 –2)

(-1 4)

(-1)

watched
literals

One literal clause breaks invariants: handled
as a special case (ignored hereafter)

Conceptually, we identify the first two literals in each clause as the watched
ones
Changing which literals are watched is represented by reordering the literals
in the clause (which comes into play later)
Clauses of size one are a special case

Lintao Zhang

BCP Algorithm (3/8)
We begin by processing the assignment v1 = F (which is implied by
the size one clause)

(2 3 1 4 5)

(1 2 -3)

(1 –2)

(-1 4)

State:(v1=F)

Pending:

Lintao Zhang

BCP Algorithm (3.1/8)
We begin by processing the assignment v1 = F (which is implied by
the size one clause)

(2 3 1 4 5)

(1 2 -3)

(1 –2)

(-1 4)

To maintain our invariants, we must examine each clause where the
assignment being processed has set a watched literal to F.

State:(v1=F)

Pending:

Lintao Zhang

BCP Algorithm (3.2/8)
We begin by processing the assignment v1 = F (which is implied by
the size one clause)

(2 3 1 4 5)

(1 2 -3)

(1 –2)

(-1 4)

To maintain our invariants, we must examine each clause where the
assignment being processed has set a watched literal to F.
We need not process clauses where a watched literal has been set to T,
because the clause is now satisfied and so can not become implied.

State:(v1=F)

Pending:

Lintao Zhang

BCP Algorithm (3.3/8)
We begin by processing the assignment v1 = F (which is implied by
the size one clause)

(2 3 1 4 5)

(1 2 -3)

(1 –2)

(-1 4)

To maintain our invariants, we must examine each clause where the
assignment being processed has set a watched literal to F.
We need not process clauses where a watched literal has been set to T,
because the clause is now satisfied and so can not become implied.
We certainly need not process any clauses where neither watched literal
changes state (in this example, where v1 is not watched).

State:(v1=F)

Pending:

Lintao Zhang

BCP Algorithm (4/8)
Now let’s actually process the second and third clauses:
(2 3 1 4 5)

(1 2 -3)

(1 –2)

(-1 4)

State:(v1=F)

Pending:

Lintao Zhang

BCP Algorithm (4.1/8)
Now let’s actually process the second and third clauses:
(2 3 1 4 5)

(1 2 -3)

(1 –2)

(-1 4)

For the second clause, we replace v1 with ¬v3 as a new watched literal.
Since ¬v3 is not assigned to F, this maintains our invariants.

(2 3 1 4 5)

(-3 2 1)

(1 –2)

(-1 4)

State:(v1=F)

Pending:

State:(v1=F)

Pending:

Lintao Zhang

BCP Algorithm (4.2/8)
Now let’s actually process the second and third clauses:
(2 3 1 4 5)

(1 2 -3)

(1 –2)

(-1 4)

For the second clause, we replace v1 with ¬v3 as a new watched literal.
Since ¬v3 is not assigned to F, this maintains our invariants.
The third clause is implied. We record the new implication of ¬v2, and add it
to the queue of assignments to process. Since the clause cannot again
become newly implied, our invariants are maintained.

(2 3 1 4 5)

(-3 2 1)

(1 –2)

(-1 4)

State:(v1=F)

Pending:

State:(v1=F)

Pending:(v2=F)

Lintao Zhang

BCP Algorithm (5/8)
Next, we process ¬v2. We only examine the first 2 clauses.
(2 3 1 4 5)

(-3 2 1)

(1 –2)

(-1 4)

For the first clause, we replace v2 with v4 as a new watched literal. Since v4
is not assigned to F, this maintains our invariants.
The second clause is implied. We record the new implication of v3, and add
it to the queue of assignments to process. Since the clause cannot again
become newly implied, our invariants are maintained.

(4 3 1 2 5)

(-3 2 1)

(1 –2)

(-1 4)

State:(v1=F, v2=F)

Pending:

State:(v1=F, v2=F)

Pending:(v3=F)

Lintao Zhang

BCP Algorithm (6/8)
Next, we process ¬v3. We only examine the first clause.
(4 3 1 2 5)

(-3 2 1)

(1 –2)

(-1 4)

For the first clause, we replace v3 with v5 as a new watched literal. Since v5 is not
assigned to F, this maintains our invariants.
Since there are no pending assignments, and no conflict, BCP terminates and we
make a decision. Both v4 and v5 are unassigned. Let’s say we decide to assign v4=T
and proceed.

(4 5 1 2 3)

(-3 2 1)

(1 –2)

(-1 4)

State:(v1=F, v2=F, v3=F)

Pending:

State:(v1=F, v2=F, v3=F)

Pending:

Lintao Zhang

BCP Algorithm (7/8)
Next, we process v4. We do nothing at all.
(4 5 1 2 3)

(-3 2 1)

(1 –2)

(-1 4)

Since there are no pending assignments, and no conflict, BCP terminates
and we make a decision. Only v5 is unassigned. Let’s say we decide to
assign v5=F and proceed.

(4 5 1 2 3)

(-3 2 1)

(1 –2)

(-1 4)

State:(v1=F, v2=F, v3=F,
v4=T)

State:(v1=F, v2=F, v3=F,
v4=T)

Lintao Zhang

BCP Algorithm (8/8)
Next, we process v5=F. We examine the first clause.
(4 5 1 2 3)

(-3 2 1)

(1 –2)

(-1 4)

The first clause is implied. However, the implication is v4=T, which is a duplicate
(since v4=T already) so we ignore it.
Since there are no pending assignments, and no conflict, BCP terminates and we
make a decision. No variables are unassigned, so the problem is sat, and we are
done.

(4 5 1 2 3)

(-3 2 1)

(1 –2)

(-1 4)

State:(v1=F, v2=F, v3=F,
v4=T, v5=F)

State:(v1=F, v2=F, v3=F,
v4=T, v5=F)

Lintao Zhang

Chaff: BCP Algorithm
Summary

During forward progress: Decisions and Implications
Only need to examine clauses where watched literal is set to F

Can ignore any assignments of literals to T
Can ignore any assignments to non-watched literals

During backtrack: Unwind Assignment Stack
Any sequence of chronological unassignments will maintain our
invariants

So no action is required at all to unassign variables.

Overall
Minimize clause access

Lintao Zhang

Implementation in ZChaff
-V1 V3 V5 V6 -V7

V2 V4 V6

-V1 V4 -V7 V11 V12 V15

-V1 V3 V4 -V5 V6

-V3 V4 -V5 -V6

-V2 -V3 V11 V12 V13 V15

V1

V2

V3

+

-

+

-

+

-

Lintao Zhang

Implementation in ZChaff
-V1 V4 -V7 V11 V12 V15 -V1 V4 -V7 V11 V12 V15

-V1 V4 -V7 V11 V12 V15-V1 V4 -V7 V11 V12 V15

-V1 V4 -V7 V11 V12 V15 -V1 V4 -V7 V11 V12 V15

-V1 V4 -V7 V11 V12 V15

V1=1@3

V4=0@5

V7= 0@3
V12=1@3

V15=0@4
V7=1@5
V11=0@5

Implication: V12=1@5

Conflict, Backtrack to 4

V4=0@4

V12 Lit value unknown

V12 Lit value 0

V12 Lit value 1

Always try to avoid watch literals with value 0

Lintao Zhang

Difference of BCP in Chaff and
SATO

V15V12V10-V8V5V4-V2V1

V15V12V10-V8V5V4-V2V1

V1

V1

V1 Free Literal

Value 0 Literal

Value 1 Literal

Chaff:

SATO:

Lintao Zhang

Difference of BCP in Chaff and
SATO

V15V12V10-V8V5V4-V2V1

V15V12V10-V8V5V4-V2V1

V1

V1

V1 Free Literal

Value 0 Literal

Value 1 Literal

Chaff:

SATO:

Lintao Zhang

Difference of BCP in Chaff and
SATO

V15V12V10-V8V5V4-V2V1

V15V12V10-V8V5V4-V2V1

V1

V1

V1 Free Literal

Value 0 Literal

Value 1 Literal

Chaff:

SATO:

Lintao Zhang

Difference of BCP in Chaff and
SATO

V15V12V10-V8V5V4-V2V1

V15V12V10-V8V5V4-V2V1

V1

V1

V1 Free Literal

Value 0 Literal

Value 1 Literal

Chaff:

SATO:

Lintao Zhang

Difference of BCP in Chaff and
SATO

V15V12V10-V8V5V4-V2V1

V15V12V10-V8V5V4-V2V1

Implication

V1

V1

V1 Free Literal

Value 0 Literal

Value 1 Literal

Chaff:

SATO:

Lintao Zhang

Difference of BCP in Chaff and
SATO

V15V12V10-V8V5V4-V2V1

V15V12V10-V8V5V4-V2V1

V1

V1

V1 Free Literal

Value 0 Literal

Value 1 Literal

Chaff:

SATO:

Lintao Zhang

Difference of BCP in Chaff and
SATO

V15V12V10-V8V5V4-V2V1

V15V12V10-V8V5V4-V2V1

Backtrack

V1

V1

V1 Free Literal

Value 0 Literal

Value 1 Literal

Chaff:

SATO:

Lintao Zhang

Difference of BCP in Chaff and
SATO

V15V12V10-V8V5V4-V2V1

V15V12V10-V8V5V4-V2V1

V1

V1

V1 Free Literal

Value 0 Literal

Value 1 Literal

Chaff:

SATO:

Lintao Zhang

Difference of BCP in Chaff and
SATO

V15V12V10-V8V5V4-V2V1

V15V12V10-V8V5V4-V2V1

V1

V1

V1 Free Literal

Value 0 Literal

Value 1 Literal

Chaff:

SATO:

Lintao Zhang

Difference of BCP in Chaff and
SATO

V15V12V10-V8V5V4-V2V1

V15V12V10-V8V5V4-V2V1

V1

V1

V1 Free Literal

Value 0 Literal

Value 1 Literal

Chaff:

SATO:

Lintao Zhang

Efficient Implementation of
SAT Solvers

while(1) {
if (decide_next_branch()) { //Branching

while(deduce()==conflict) { //Deducing
blevel = analyze_conflicts(); //Learning
if (blevel < 0)

return UNSAT;
else back_track(blevel); //Backtracking

}
else //no branch means all variables got assigned.

return SATISFIABLE;
}

Lintao Zhang

What is Learning?
Adding information about the instance into the solution process without
changing the satisfiability of the problem

In CNF representation, it is accomplished by the addition of clauses into the
clause database.

Knowledge of failure of search in a certain space may help search in other
spaces

Conflict Driven Learning: record the reasons for failure of search as clauses,
and add them to the database to help prune the space for future search
Non-Conflict Driven Learning:

Recursive learning
Probing

Learning is very effective in pruning the search space for structured
problems

It is of limited use for random instances
Why? It’s still an open question.

Lintao Zhang

What’s the big deal?

x2

x1

x4

x3

x4

x3

x5x5x5x5

Conflict clause: x1’+x3+x5’

Significantly prune the search space –
learned clause is useful forever!

Useful in generating future conflict
clauses.

Lintao Zhang

Restart
Abandon the
current search
tree and
reconstruct a
new one
The clauses
learned prior to
the restart are
still there after
the restart and
can help pruning
the search space
Adds to
robustness in the
solver

x2

x1

x4

x3

x4

x3

x5x5x5x5

Conflict clause: x1’+x3+x5’

x2

x1

x3

x5

Lintao Zhang

Implication Graph

Conflicting Clause: (V3’+V19’+V18’)

Decision
Variable

UIP -V5(5)

V3(5)
V1(5)

V8(2)-V6(1)

V11(5)

-V13(2)

V16(5)

-V12(5)

-V10(5)

V18(5)

-V17(1)

V19(3)

-V18(5)

V4(3)

-V2(5) Conflicting
Variable

Decision Variable

Variable assigned at previous d-level

Variable assigned at current d-level

(V4’+V2+V10’)

V4 and V2 are called
the antecedents of V10

A node is a UIP (Unique
Implication Point) of the
current decision level if
all paths from the
decision variable of
current d level to the
conflicting variable
needs to go through this
node

Lintao Zhang

Bi-partition of the Implication
Graph

Cut 3: cut does not
involve conflict

Cut 2

-V5(5)

V3(5)
V1(5)

V8(2)-V6(1)

V11(5)

-V13(2) V16(5)

-V12(5)

-V10(5)

V18(5)

-V17(1)

V19(3)

-V18(5)

V4(3)

-V2(5)

Cut 1

Conflict
Side

Reason
Side

(V1’+ V3’ + V5 + V17 + V19’)

(V2 + V4’ + V8’ + V17 + V19’)

(V2’ + V6 + V11’ + V13)

Reason side
contains all
the decision
variables

Conflict side
contains the
conflicting
variable (both
positive and
negative phase)

Lintao Zhang

Asserting Clauses and UIP
Whenever a conflict occurs, conflict clauses can be generated and
added to the database.
If a conflict clause has only one literal at the highest decision level,
after backtracking, the clause will become unit, and force the solver
to explore a new search space.

Such a conflict clause is called an asserting clause.
It is desirable to make a conflict clause an asserting clause.

To make a conflict clause an asserting clause, the partition needs to
have

one UIP of the current decision level on the reason side
all vertices assigned after it on the conflict side.

Lintao Zhang

Decision Only Scheme

Conflict Clause consists of
only decision variables.

Intuitively, this is not a good
idea because the same
decision sequence will not
happen again. Therefore, this
clause may be useful only if it
does not contain all the
decision variables.

Reason
Side

Conflict
Side

Lintao Zhang

Relsat Learning Scheme

Reason
Side

-V5(5)

V3(5)
V1(5)

V8(2)-V6(1)

V11(5)

-V13(2) V16(5)

-V12(5)

-V10(5)

V18(5)

-V17(1)

V19(3)

-V18(5)

V4(3)

-V2(5) Conflict
Side

Last UIP Cut

(V11 ’+ V6 + V13 + V4 ’
+ V8 ’ + V17 + V19’)

This clause only contains a single variable at the highest decision level.
After backtracking and resolving the conflict, it will become a unit clause.
The variable will be forced to flip, and it will assume the decision level of
the highest of the rest literals

Lintao Zhang

GRASP’s Learning Scheme

Reason
Side

-V5(5)

V3(5)
V1(5)

V8(2)-V6(1)

V11(5)

-V13(2) V16(5)

-V12(5)

-V10(5)

V18(5)

-V17(1)

V19(3)

-V18(5)

V4(3)

-V2(5) Conflict
Side

First UIP Cut
(V10 + V8’ + V17 + V19’)

Lintao Zhang

GRASP’s Learning Scheme

cut does not
involve conflict

(V2’ + V6 + V11’ + V13)

Reason
Side

-V5(5)

V3(5)
V1(5)

V8(2)-V6(1)

V11(5)

-V13(2) V16(5)

-V12(5)

-V10(5)

V18(5)

-V17(1)

V19(3)

-V18(5)

V4(3)

-V2(5) Conflict
Side

Lintao Zhang

GRASP’s Learning Scheme

Reason
Side

-V5(5)

V3(5)
V1(5)

V8(2)-V6(1)

V11(5)

-V13(2) V16(5)

-V12(5)

-V10(5)

V18(5)

-V17(1)

V19(3)

-V18(5)

V4(3)

-V2(5) Conflict
Side

-V21(1)

-V20(1)

(V21 + V20 + V6 + V13 +
V4’ + V8’ + V17 + V19’)

Lintao Zhang

First UIP scheme

Reason
Side

-V5(5)

V3(5)
V1(5)

V8(2)-V6(1)

V11(5)

-V13(2) V16(5)

-V12(5)

-V10(5)

V18(5)

-V17(1)

V19(3)

-V18(5)

V4(3)

-V2(5) Conflict
Side

First UIP Cut

Lintao Zhang

Relsat v.s. 1UIP

0

1

2

3

4

5

Branches Added
Clauses

Added
Literals

Num.
Implications

Runtime

9vliw_bp_mc
longmult10
bw_large_d

Ratio of statistics: relsat/1UIP

Lintao Zhang

GRASP v.s. 1UIP

0

2

4

6

8

10

12

Branches Added
Clauses

Added
Literals

Num.
Implications

Runtime

9vliw_bp_mc
longmult10
bw_large_d

Ratio of statistics: GRASP/1UIP

Lintao Zhang

Other Issues
Random Restart

Periodically, throw away current search tree and start from the
beginning
Very important for robustness
Employed by all modern SAT solvers

Clause Deletion
Learned clauses slows down BCP, and eat up memory
Have to be deleted periodically
Various heuristics are proposed, based on

Clause age
Clause length
Clause relevance
Etc.

Lintao Zhang

Engineering Issues
Data structure tuning

Avoid linked list, always use array (vector)
Memory management

Garbage collection
Careful Coding

How to maintain the the decision priority queue?
Cache performance

Lintao Zhang

Cache Friendliness: Test
Cases

1,415,933,580

1795

11.78

620,374,889

3771

4.41

86,610,942

3166

0.22

10045

3725

776

1dlx_c_mc_ex_bp_f

2,914,228,045

1927

26.50 (DNF)

1,762,565,056

4176

10.91

1,299,030,113

8685

3.94

12200

4934

718

Hanoi4

Num Clauses

Grasp

SATO
(-g100)

Z-Chaff

Num Literals

Num Variables

Inst. Executed

Branch

Run Time

Inst. Executed

Branch

Run Time

Inst. Executed

Branch

Run Time

Lintao Zhang

Cache Friendliness (Data Only)

The programs are compiled with –O3 using g++ 2.8.1(for GRASP and Chaff) or gcc 2.8.1 (for Sato3.2.1)
on Sun OS 4.1.2 Trace was generated with QPT quick tracing and profiling tool. Trace was processed
with dineroIV, the memory configuration is similar to a Pentium III processor:

L1: 16K Data, 16K Instruction, L2: 256k Unified. Both have 32 byte cache line, 4 way set associativity.

Miss RateMiss Rate

Hanoi41dlx_c_mc_ex_bp_f

335,713,542

876,250,978

202,495,679

465,160,957

30,396,519

364,782,257

153,490,555

415,572,501

79,422,894

188,352,975

1,659,877

24,029,356

Grasp

SATO
(-g100)

Z-Chaff

51.15%50.25%L2

32.53%32.89%L1

16.77%9.74%L2

41.76%36.76%L1

11.65%4.63%L2

5.38%4.75%L1

Num AccessNum Access

