NP-Completeness and Cook’s Theorem

Lecture notes for COM341Rogic and Computation
15th January 2002

1 NP decision problems

Thedecision problem D, for a formal languag€ C ¥* is the computational task:
Given an arbitrary strindg € >*, to determine whether or néte L.

The input stringl is called aninstance of the problemD,. It is a positive or “yes” instance ifl € L,
otherwise it is anegativeor “no” instance. Any computational decision problem can be represented as the
decision problem for some formal languafje

A decision problem is calledon-deterministically polynomial (NP) if there is a languagé’ and a
relationcert € C' x ¥* such that, for eaclh € >*,

1. I € Lifand only if cert(c, I) for somec € C, and

2. foranyc € C, it can be determined whether or nett(c, I') in a time that is bounded by a polynomial
function of the length of .

For a positive instancé of D, any element € C such thatcert(c, I) is called acertificate for I. It
certifies that/ is indeed a positive instance (since only positive instames® certificates), and it can be
checked to be a certificate in polynomial time.

For “it can be determined” in the definition above, we may read “there exists a Turing machine which
can determine”; this is justified by the Church-Turing thesis. Later we shall be more specific about the
format we would like our certificate-checking machine to have.

If we had access to unlimited parallelism, we could build a machine which, given insfaac&™,
concurrently checks alt € C' to determine whethetert(c, ). This could be done in polynomial time.
Alternatively, we could use a non-deterministic machine whgdessesn element: € C and checks
whether or not it is a certificate fdr. This also can be done in polynomial time, but is not of any practical
utility, since the chance of finding a certificate fbat random is remote; but it does explain the origin of
the designation NP.

Very many computational problems encountered in practice arevbilPlearnt about some of them in
the second year.

Stephen Cook showed in 1971 that any NP problem can be converted in polynomial time to the specific
problem SAT, the Satisfiability Problem for Propositional Calculus clauses. We shall define this problem,
explain Cook’s proof, and then discuss its implications: in particular, it leads us to the very important notion
of NP-completeness



2 The satisfiability problem SAT

A clausein the Propositional Calculus is a formula of the form
—A1V AV VA,V BV BV V By,

wherem > 0,n > 0, and eachd; and B; is a single schematic letter. Schematic letters and their negations
are collectively known abterals; so a clause is simply disjunction of literals
The clause above was writtendiisjunctive form. It can also be written iconditional form, without
negation signs, as
A NAsN.. A, — BiVByV---VB,.

Note that ifm = 0 this is simply
Bi1VByV---V By,

while if n = 0 it may be written as
—|(A1 ANAg A .. Am)

We shall use the conditional notation for clauses from nov on.
Note thatany Propositional Calculus formula is equivalent to the conjunction of one or more clauses,
for example:

¢

A—~B =% (A—-B)AN(B— A)
AV (BANC) 2 (AVB)A(AVO)
AANB—-C = =(AANBACQC)

The satisfiability problem (SAT) may be stated as follows:

Given a finite se{C1,Cy, ..., C,} of clauses, determine whether there is an assignment of
truth-values to the schematic letters appearing in the clauses which makes all the clauses true.

The size of an instance of SAT is the total number of schematic letters appearing in all the clauses; e.g., the
instance
{AVB,A—CVD,~(BNCAE),C —-BVE,~(AANE)}

is of size 13.
SAT is easily seen to be NP. Given a candidate certificate, say

A =true, B = false,C = false, D = true, E = false

for the instance above, the time it takes to check whether it really is a certificate is iméatin the size
of the instance (double the size of the instance, and you double thetime).

We shall show thaany NP problem can be converted to SAT in polynomial time. First, we must define
what we mean by converting one problem into another.

'Exercise Satisfy yourselves that these conditional forms are equivalent to the corresponding disjunctive forms.
2Exercise Check whether the candidate certificate just given is or is not a certificate for the instance above. Does this tell you
whether the instance is a positive instance of SAT?



3 Problem conversion

A decision problemD; can beconvertedinto a decision problen®, if there is an algorithm which takes
as input an arbitrary instande of D, and delivers as output an instangeof D5 such thatls is a positive
instance ofDs, if and only if I; is a positive instance ab;.

If Dy can be converted int®,, and we have an algorithm which solvBs, then we thereby have an
algorithm which solved);. To solve an instanceé of D; we first use the conversion algorithm to generate
an instancd’ of D5, and then use the algorithm for solvifg, to determine whether or ndt is a positive
instance ofD-. If it is, then we know thaf is a positive instance db,, and if it is not, then we know that
I is a negative instance @;. Either way, we have solveB; for that instance.

Moreover, in this case, we can say that the computational complexify, @ at most the sum of the
computational complexities dd, and the conversion algorithm. If the conversion algorithm has polynomial
complexity, we say thab, is at most polynomially harder thanD. It means that the amount of compu-
tational work we have to do to solv8;, over and above whatever is required to sal¥g is polynomial in
the size of the problem instance. In such a case the conversion algorithm provides us with a feasible way of
solving D1, given that we know how to solvBs.

4 Cook's Theorem
Cook’s Theorem states that
Any NP problem can be converted to SAT in polynomial time.

In order to prove this, we require a uniform way of representing NP problems. Remember that what makes
a problem NP is the existence of a polynomial-time algorithm—more specifically, a Turing machine—for
checking candidate certificates. What Cook did was somewhat analogous to what Turing did when he
showed that th&ntscheidungsproblemvas equivalent to the Halting Problem. He showed how to encode
as Propositional Calculus clauses both the relevant facts about the problem instance and the Turing machine
which does the certificate-checking, in such a way that the resulting set of clauses is satisfiable if and only
if the original problem instance is positive. Thus the problem of determining the latter is reduced to the
problem of determining the former.

Assume, then, that we are given an NP decision proldlerBy the definition of NP, there is a polyno-
mial function P and a Turing machiné/ which, when given any instandeof D, together with a candidate
certificatec, will check in time no greater tha®(n), wheren is the length ofl, whether or not is a
certificate off.

Let us assume that/ hasq states numbere@l 1,2,...,¢ — 1, and a tape alphabet, as, ..., as. We
shall assume that the operation of the machine is governed by the funétidhsand D as described in
the chapter on thEntscheidungsproblenWe shall further assume that the initial tape is inscribed with the
problem instance on the squareg, 3, ..., n, and the putative certificate on the squares, ..., -2, —1.
Square zero can be assumed to contain a designated separator symbol. We shall also assume that the machine
halts scanning square 0, and that the symbol in this square at that stageayiif bad only if the candidate
certificate is a true certificate. Note that we must hewe. P(n). This is because with a problem instance
of lengthn the computation is completed in at md3tn) steps; during this process, the Turing machine
head cannot move more th&t{n) steps to the left of its starting point.

We define some atomic propositions with their intended interpretations as follows:

1. Fori =0,1,...,P(n)andj = 0,1,...,q — 1, the propositiony;; says that aftei computation
steps,M is in statej.



2.

Next,

Fori = 0,1,...,P(n),j = —P(n),...,P(n),andk = 1,2,...,s, the propositionS,;;, says that
afteri computation steps, squaj®f the tape contains the symhag].

.1=0,1,...,P(n)andj = —P(n),..., P(n), the propositiorY;; says that after computation steps,

the machinél/ is scanning squargof the tape.

we define some clauses to describe the computation execufed by

. At each computation step/ is in at least one statd=or eachi = 0, ..., P(n) we have the clause

Qio vV Qi1 V-V Qi(g-1),

giving (P(n) + 1)g = O(P(n)) literals altogether.

. At each computation step/ is in at most one statd=or eachi = 0, ..., P(n) and for each paiy, k

of distinct states, we have the clause
=(Qij N Qik),
giving a total ofg(¢ — 1)(P(n) + 1) = O(P(n)) literals altogether.

. At each step, each tape square contains at least one alphabet syfrob@ach = 0, ..., P(n) and

—P(n) < j < P(n) we have the clause
Sij1 V Sij2 V- -V Sijs,
giving (P(n) + 1)(2P(n) + 1)s = O(P(n)?) literals altogether.

At each step, each tape square contains at most one alphabet syfobelachi = 0, ..., P(n) and
—P(n) < j < P(n), and each distinct pair, a; of symbols we have the clause

=(Sijk A Siji),

giving a total of(P(n) + 1)(2P(n) + 1)s(s — 1) = O(P(n)?) literals altogether

. At each step, the tape is scanning at least one squrmeeach = 0, ..., P(n), we have the clause

Ti—p)) vV Tia—pPm)) V- V Lip(n)-1) V Tip(n)s

giving (P(n) + 1)(2P(n) + 1) = O(P(n)?) literals altogether.

. At each step, the tape is scanning at most one squeseeachi = 0,..., P(n), and each distinct

pair j, k of tape squares from P(n) to P(n), we have the clause

giving a total of2P(n)(2P(n) + 1)(P(n) + 1) = O(P(n)3) literals.

. Initially, the machine is in state 1 scanning squareThis is expressed by the two clauses

Qo1,To1,

giving just two literals.



8. The configuration at each step after the first is determined from the configuration at the previous step
by the functions’, U, and D defining the machind/. For eachi = 0,...,P(n), —P(n) < j <

P(n),k=0,...,¢g—1,andl =1,...,s, we have the clauses
Tij N Qi NSijit = Qit1)T(k,0)
Tij NQik NSit — S(i+1)U (kD)
Tij NQik N Sit = Tig1)(j+D (kD))
Sijk —

Tij V Sit1)jk

The fourth of these clauses ensures that the contents of any tape square other than the currently
scanned square remains the same (to see this, note that the given clause is equivalent to the formula
Sijk N =Ti; — S(it1)jx)- These clauses contribute a total(®®s + 3)(P(n) + 1)(2P(n) + 1)q =

O(P(n)?) literals.

9. Initially, the stringa;, a;, . . . a;, defining the problem instandeis inscribed on squares, 2,...,n
of the tapeThis is expressed by theclauses

S(]lil ) SOQizv ey S()nin:
a total ofn literals.

10. By the P(n)th step, the machine has reached the halt state, and is then scanning square 0, which
contains the symbal;. This is expressed by the three clauses

Q P(n)0> SP(n)01s TP(n)o>
giving another 3 literals.

Altogether the number of literals involved in these claus&3(iB(n)?) (in working this out, note that and

s are constants, that is, they depend only on the machine and do not vary with the problem instance; thus
they do not contribute to the growth of the the number of literals with increasing problem size, which is
what theO notation captures for us). Itis thus clear that the procedure for setting up these clauses, given the
original machinel/ and the instancé of problemD, can be accomplished in polynomial time.

We must now show that we have succeeded in conveffimgto S AT. Suppose first that is a positive
instance ofD. This means that there is a certificateuch that wher\/ is run with inputse, I, it will halt
scanning symbod; on square 0. This means that there is some sequence of symbols that can be placed
initially on squares—P(n),...,—1 of the tape so that all the clauses above are satisfied. Hence those
clauses constitute a positive instanceSofT .

Conversely, supposkis a negative instance @. In that case there iso certificate for/, which means
that whateversymbols are placed on square$’(n), ..., —1 of the tape, when the computation halts the
machine will not be scanning; on square 0. This means that the set of clauses above is not satisfiable, and
hence constitutes a negative instancé dff".

Thus from the instancé of problemD we have constructed, in polynomial time, a set of clauses which
constitute a positive instance of SAT if and onlyis a positive instance ab. In other words, we have
convertedD into SAT in polynomial time. And sinc® was an arbitrary NP problem it follows thahy NP
problem can be converted to SAT in polynomial time.



5 NP-completeness

Cook’s Theorem implies that any NP problem is at most polynomially harder than SAT. This means that if
we find a way of solving SAT in polynomial time, we will then be in a position to solve any NP problem

in polynomial time. This would have huge practical repercussions, since many frequently encountered
problems which are so far believed to be intractable are NP.

This special property of SAT is calledP-completenessA decision problem is NP-complete if it has
the property that any NP problem can be converted into it in polynomial time. SAT was the first NP-complete
problem to be recognised as such (the theory of NP-completeness having come into existence with the proof
of Cook’s Theorem), but it is by no means the only one. There are now literally thousands of problems,
cropping up in many different areas of computing, which have been proved to be NP-complete.

In order to prove that an NP problem is NP-complete, all that is needed is to show that SAT can be con-
verted into it in polynomial time. The reason for this is that the sequential composition of two polynomial-
time algorithms is itself a polynomial-time algorithm, since the sum of two polynomials is itself a poly-
nomial3. Suppose SAT can be converted to probl&in polynomial time. Now take any NP problem
D’. We know we can convert it into SAT in polynomial time, and we know we can convert SATrito
polynomial time. The result of these two conversions is a polynomial-time conversibhinfo D. Since
D’ was an arbitrary NP problem, it follows thaxis NP-complete.

We illustrate this by showing that the problem 3SAT is NP-complete. This problem is similar to SAT,
but restricts the clauses to at most three schematic letters each:

Given a finite se{C4, Cs, ..., C,} of clauses, each of which contains at most three schematic
letters, determine whether there is an assignment of truth-values to the schematic letters appear-
ing in the clauses which makes all the clauses true.

3SAT is obviously NP (since it is a special case of SAT, which is NP). It turns out to be straightforward to
convert an arbitrary instance of SAT into an instance of 3SAT with the same satisfiability property.

Take any clause written in disjunctive form@s= L, v Ly VvV ...V L,, wheren > 3 and each’; is a
literal. We replace this by — 2 new clauses, using — 3 new schematic letter¥, ..., X,,_3, as follows:

L1V LyV Xy
X1 — L3V Xy
Xo — LsV X3

Xnqa— Lp oV Xp_3
Xn-3— Lp 1V Ly

Call the new set of claused Any truth-assignment to the schematic letters appearing in.thehich
satisfiesC can be extended to th&, so thatC is satisfied, and conversely any truth-assignment which
satisfie also satisfieg’.

To prove this, suppose that a certain truth-assignment sat{sfiéehen it satisfies at least one of the
literals appearing id’, sayL,. Now assigrtrue to X1, Xo,..., X o andfalseto X;_1,..., X,_3. Then
all the clauses id are satisfied: foi = 1,2,...,k — 2, theith clause is satisfied becau&g is true; the
(k — 1)th clause is satisfied becaukg is true; and forj = k,k + 1,...,n — 2 the jth clause is satisfied
becauseX;_; (appearing in the antecedent) is false.

Conversely, suppose we have a truth-assignment satisfyirepch clause i€ is satisfied. Suppose
Ly,...,L, o are all false. Then itis easy to see that all fiemust be true; in particulak’,,_s is true, so
eitherL,,_1 or L,, is true. Thus in any event at least one of fhds true, and henc€’ is true.

3For example, the sum af — 523 + 3 andda* — 22 — 8isa® + 4a* — 52 — 22 — 5



If we take an instance of SAT and replaaiéthe clauses containing more than three literals by clauses
containing exactly three in the way described above, we end up with an instance of 3SAT which is satis-
fiable if and only if the original instance is satisfiable. Moreover, the conversion can be accomplished in
polynomial time. It follows that 3SAT, like SAT, is NP-complete.

6 P=NP?

We have seen that a problem is NP-complete if and only if it is NP and any NP problem can be converted
into it in polynomial time. (A problem satisfying the second condition is caNédhard; so NP-complete
means NRand NP-hard.) It follows from this that all NP-complete problems are mutually interconvertible

in polynomial time. For ifD; and Dy are both NP-complete, thei; can be converted int®, by virtue

of the fact thatD, is NP andD- is NP-hard, and), can be converted int®, by virtue of the fact thaD,

is NP andD; is NP-hard. Thus as far as computational complexity is concerned, all NP-complete problems
agree to within some polynomial amount of difference.

But what is the computational complexity of these problems? If any one NP-complete problem can be
shown to be of polynomial complexity, then by the above they all are. If on the other hand any one NP-
complete problem can be shown not to be solvable in polynomial time, then by the above, none of them are
so solvable. All NP-complete problems stand or fall together.

The current state of our knowledge is this: we know how to solve NP-complete problexsdnential
time, but there is no NP-complete problem for which any algorithm is known that runs in less than expo-
nential time. On the other hand, no-one has ever succeeded in proving that it is not possible to solve an
NP-complete problem faster than that. This implies, of course, that no-one has proved that NP-complete
problems can'’t be solved polynomialtime.

If we could solve NP-complete problems in polynomial time, then the whole class NP would collapse
down into the class P of problems solvable in polynomial time. This is because the NP-complete problems
are thehardestof all NP problems, and if they are polynomial then all NP problems are polynomial. Thus the
guestion of whether or not there are polynomial algorithms for NP-complete problems has become known
as the “P=NP?” problem. Most people who have an opinion on this believe that the answer is no, that is,
NP-complete problems are strictly harder than polynomial problems.

All this assumes, of course, the Turing model of computation, which applies to all existing computers.
However, as suggested above, if we had access to unlimited parallelism, we could solve any NP problem
(including therefore the NP-complete problems) in polynomial time. Existing computers do not provide us
with such parallelism; but if the current work on Quantum Computation comes to fruition, then it may be that
a new generation of computers will have exactly such abilities, and if that happens, then everything changes.
It would not solve the classic P=NP question, of course, because that question concerns the properties of
Turing-equivalent computation; what would happen is that the theory of Turing-equivalent computation
would suddenly become much less relevant to practical computing concerns, making the question only of
theoretical interest.

7 Bibliographic notes

The treatment of Cook’s Theorem and the conversion of SAT to 3SAT above are based on the account given
by Herbert S. Wilf,Algorithms and Complexit{Prentice-Hall International, 1986, now out of print, but
there are two copies in the library).

A classic exposition of the theory of NP-completeness, with many examples of NP-complete problems,
is M. R. Garey and D. S. Johnsddpmputers and intractability: a guide to the theory of NP-completeness



(W. H. Freeman, 1979).
Other useful sources for this material are:

e Harry R. Lewis and Christos H. Papadimitridtlements of the Theory of Computati®rentice-Hall
International, 1998 (Chapter 7: NP-completeness)

e John C. Martin,Introduction to Languages and the Theory of ComputatigecGraw-Hill, 1991
(Chapter 23: Tractable and Intractable Problems)

e Thomas A. Sudkamp,anguages and Machines: An Introduction to the Theory of Computer Scgience
Addison-Wesley, 1988 (Chapter 14: Computational Complexity)

e V. J. Rayward-SmithA First Course in ComputabilityBlackwell Scientific Publications, 1986 (Chap-
ter 6: Complexity Theory)

All these books are in the university library. For a less technical overview, consult the two books by David
Harel: Algorithmics: The Spirit of ComputinfAddison-Wesley, 1987) an@omputers Ltd: What They
ReallyCan’t Do (OUP, 2000).



