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1 NP decision problems

Thedecision problemDL for a formal languageL ⊆ Σ∗ is the computational task:

Given an arbitrary stringI ∈ Σ∗, to determine whether or notI ∈ L.

The input stringI is called aninstanceof the problemDL. It is a positive or “yes” instance ifI ∈ L,
otherwise it is anegativeor “no” instance. Any computational decision problem can be represented as the
decision problem for some formal languageL.

A decision problem is callednon-deterministically polynomial (NP) if there is a languageC and a
relationcert ∈ C × Σ∗ such that, for eachI ∈ Σ∗,

1. I ∈ L if and only if cert(c, I) for somec ∈ C, and

2. for anyc ∈ C, it can be determined whether or notcert(c, I) in a time that is bounded by a polynomial
function of the length ofI.

For a positive instanceI of DL, any elementc ∈ C such thatcert(c, I) is called acertificate for I. It
certifies thatI is indeed a positive instance (since only positive instanceshavecertificates), and it can be
checked to be a certificate in polynomial time.

For “it can be determined” in the definition above, we may read “there exists a Turing machine which
can determine”; this is justified by the Church-Turing thesis. Later we shall be more specific about the
format we would like our certificate-checking machine to have.

If we had access to unlimited parallelism, we could build a machine which, given instanceI ∈ Σ∗,
concurrently checks allc ∈ C to determine whethercert(c, I). This could be done in polynomial time.
Alternatively, we could use a non-deterministic machine whichguessesan elementc ∈ C and checks
whether or not it is a certificate forI. This also can be done in polynomial time, but is not of any practical
utility, since the chance of finding a certificate forI at random is remote; but it does explain the origin of
the designation NP.

Very many computational problems encountered in practice are NP.You learnt about some of them in
the second year.

Stephen Cook showed in 1971 that any NP problem can be converted in polynomial time to the specific
problem SAT, the Satisfiability Problem for Propositional Calculus clauses. We shall define this problem,
explain Cook’s proof, and then discuss its implications: in particular, it leads us to the very important notion
of NP-completeness.
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2 The satisfiability problem SAT

A clausein the Propositional Calculus is a formula of the form

¬A1 ∨ ¬A2 ∨ · · · ∨ ¬Am ∨B1 ∨B2 ∨ · · · ∨Bn,

wherem ≥ 0, n ≥ 0, and eachAi andBj is a single schematic letter. Schematic letters and their negations
are collectively known asliterals; so a clause is simply adisjunction of literals.

The clause above was written indisjunctive form . It can also be written inconditional form , without
negation signs, as

A1 ∧A2 ∧ . . . Am → B1 ∨B2 ∨ · · · ∨Bn.

Note that ifm = 0 this is simply
B1 ∨B2 ∨ · · · ∨Bn,

while if n = 0 it may be written as
¬(A1 ∧A2 ∧ . . . Am).

We shall use the conditional notation for clauses from now on.1

Note thatany Propositional Calculus formula is equivalent to the conjunction of one or more clauses,
for example:

A↔ B ∼= (A→ B) ∧ (B → A)
A ∨ (B ∧ C) ∼= (A ∨B) ∧ (A ∨ C)
A ∧B → ¬C ∼= ¬(A ∧B ∧ C)

Thesatisfiability problem (SAT) may be stated as follows:

Given a finite set{C1, C2, . . . , Cn} of clauses, determine whether there is an assignment of
truth-values to the schematic letters appearing in the clauses which makes all the clauses true.

The size of an instance of SAT is the total number of schematic letters appearing in all the clauses; e.g., the
instance

{A ∨B,A→ C ∨D,¬(B ∧ C ∧ E), C → B ∨ E,¬(A ∧ E)}

is of size 13.
SAT is easily seen to be NP. Given a candidate certificate, say

A = true,B = false, C = false,D = true,E = false

for the instance above, the time it takes to check whether it really is a certificate is in factlinear in the size
of the instance (double the size of the instance, and you double the time).2

We shall show thatanyNP problem can be converted to SAT in polynomial time. First, we must define
what we mean by converting one problem into another.

1Exercise: Satisfy yourselves that these conditional forms are equivalent to the corresponding disjunctive forms.
2Exercise: Check whether the candidate certificate just given is or is not a certificate for the instance above. Does this tell you

whether the instance is a positive instance of SAT?
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3 Problem conversion

A decision problemD1 can beconverted into a decision problemD2 if there is an algorithm which takes
as input an arbitrary instanceI1 of D1 and delivers as output an instanceI2 of D2 such thatI2 is a positive
instance ofD2 if and only if I1 is a positive instance ofD1.

If D1 can be converted intoD2, and we have an algorithm which solvesD2, then we thereby have an
algorithm which solvesD1. To solve an instanceI of D1 we first use the conversion algorithm to generate
an instanceI ′ of D2, and then use the algorithm for solvingD2 to determine whether or notI ′ is a positive
instance ofD2. If it is, then we know thatI is a positive instance ofD1, and if it is not, then we know that
I is a negative instance ofD1. Either way, we have solvedD1 for that instance.

Moreover, in this case, we can say that the computational complexity ofD1 is at most the sum of the
computational complexities ofD2 and the conversion algorithm. If the conversion algorithm has polynomial
complexity, we say thatD1 is at most polynomially harder thanD2. It means that the amount of compu-
tational work we have to do to solveD1, over and above whatever is required to solveD2, is polynomial in
the size of the problem instance. In such a case the conversion algorithm provides us with a feasible way of
solvingD1, given that we know how to solveD2.

4 Cook’s Theorem

Cook’s Theorem states that

Any NP problem can be converted to SAT in polynomial time.

In order to prove this, we require a uniform way of representing NP problems. Remember that what makes
a problem NP is the existence of a polynomial-time algorithm—more specifically, a Turing machine—for
checking candidate certificates. What Cook did was somewhat analogous to what Turing did when he
showed that theEntscheidungsproblemwas equivalent to the Halting Problem. He showed how to encode
as Propositional Calculus clauses both the relevant facts about the problem instance and the Turing machine
which does the certificate-checking, in such a way that the resulting set of clauses is satisfiable if and only
if the original problem instance is positive. Thus the problem of determining the latter is reduced to the
problem of determining the former.

Assume, then, that we are given an NP decision problemD. By the definition of NP, there is a polyno-
mial functionP and a Turing machineM which, when given any instanceI of D, together with a candidate
certificatec, will check in time no greater thanP (n), wheren is the length ofI, whether or notc is a
certificate ofI.

Let us assume thatM hasq states numbered0, 1, 2, . . . , q − 1, and a tape alphabeta1, a2, . . . , as. We
shall assume that the operation of the machine is governed by the functionsT , U , andD as described in
the chapter on theEntscheidungsproblem. We shall further assume that the initial tape is inscribed with the
problem instance on the squares1, 2, 3, . . . , n, and the putative certificate on the squares−m, . . . ,−2,−1.
Square zero can be assumed to contain a designated separator symbol. We shall also assume that the machine
halts scanning square 0, and that the symbol in this square at that stage will bea1 if and only if the candidate
certificate is a true certificate. Note that we must havem ≤ P (n). This is because with a problem instance
of lengthn the computation is completed in at mostP (n) steps; during this process, the Turing machine
head cannot move more thanP (n) steps to the left of its starting point.

We define some atomic propositions with their intended interpretations as follows:

1. For i = 0, 1, . . . , P (n) andj = 0, 1, . . . , q − 1, the propositionQij says that afteri computation
steps,M is in statej.
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2. For i = 0, 1, . . . , P (n), j = −P (n), . . . , P (n), andk = 1, 2, . . . , s, the propositionSijk says that
afteri computation steps, squarej of the tape contains the symbolak.

3. i = 0, 1, . . . , P (n) andj = −P (n), . . . , P (n), the propositionTij says that afteri computation steps,
the machineM is scanning squarej of the tape.

Next, we define some clauses to describe the computation executed byM :

1. At each computation step,M is in at least one state.For eachi = 0, . . . , P (n) we have the clause

Qi0 ∨Qi1 ∨ · · · ∨Qi(q−1),

giving (P (n) + 1)q = O(P (n)) literals altogether.

2. At each computation step,M is in at most one state.For eachi = 0, . . . , P (n) and for each pairj, k
of distinct states, we have the clause

¬(Qij ∧Qik),

giving a total ofq(q − 1)(P (n) + 1) = O(P (n)) literals altogether.

3. At each step, each tape square contains at least one alphabet symbol.For eachi = 0, . . . , P (n) and
−P (n) ≤ j ≤ P (n) we have the clause

Sij1 ∨ Sij2 ∨ · · · ∨ Sijs,

giving (P (n) + 1)(2P (n) + 1)s = O(P (n)2) literals altogether.

4. At each step, each tape square contains at most one alphabet symbol.For eachi = 0, . . . , P (n) and
−P (n) ≤ j ≤ P (n), and each distinct pairak, al of symbols we have the clause

¬(Sijk ∧ Sijl),

giving a total of(P (n) + 1)(2P (n) + 1)s(s− 1) = O(P (n)2) literals altogether

5. At each step, the tape is scanning at least one square.For eachi = 0, . . . , P (n), we have the clause

Ti(−P (n)) ∨ Ti(1−P (n)) ∨ · · · ∨ Ti(P (n)−1) ∨ TiP (n),

giving (P (n) + 1)(2P (n) + 1) = O(P (n)2) literals altogether.

6. At each step, the tape is scanning at most one square.For eachi = 0, . . . , P (n), and each distinct
pair j, k of tape squares from−P (n) to P (n), we have the clause

¬(Tij ∧ Tik),

giving a total of2P (n)(2P (n) + 1)(P (n) + 1) = O(P (n)3) literals.

7. Initially, the machine is in state 1 scanning square 1.This is expressed by the two clauses

Q01, T01,

giving just two literals.
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8. The configuration at each step after the first is determined from the configuration at the previous step
by the functionsT , U , andD defining the machineM . For eachi = 0, . . . , P (n), −P (n) ≤ j ≤
P (n), k = 0, . . . , q − 1, andl = 1, . . . , s, we have the clauses

Tij ∧Qik ∧ Sijl → Q(i+1)T (k,l)

Tij ∧Qik ∧ Sijl → S(i+1)jU(k,l)

Tij ∧Qik ∧ Sijl → T(i+1)(j+D(k,l))

Sijk → Tij ∨ S(i+1)jk

The fourth of these clauses ensures that the contents of any tape square other than the currently
scanned square remains the same (to see this, note that the given clause is equivalent to the formula
Sijk ∧ ¬Tij → S(i+1)jk). These clauses contribute a total of(12s + 3)(P (n) + 1)(2P (n) + 1)q =
O(P (n)2) literals.

9. Initially, the stringai1ai2 . . . ain defining the problem instanceI is inscribed on squares1, 2, . . . , n
of the tape.This is expressed by then clauses

S01i1 , S02i2 , . . . , S0nin ,

a total ofn literals.

10. By theP (n)th step, the machine has reached the halt state, and is then scanning square 0, which
contains the symbola1. This is expressed by the three clauses

QP (n)0, SP (n)01, TP (n)0,

giving another 3 literals.

Altogether the number of literals involved in these clauses isO(P (n)3) (in working this out, note thatq and
s are constants, that is, they depend only on the machine and do not vary with the problem instance; thus
they do not contribute to the growth of the the number of literals with increasing problem size, which is
what theO notation captures for us). It is thus clear that the procedure for setting up these clauses, given the
original machineM and the instanceI of problemD, can be accomplished in polynomial time.

We must now show that we have succeeded in convertingD into SAT . Suppose first thatI is a positive
instance ofD. This means that there is a certificatec such that whenM is run with inputsc, I, it will halt
scanning symbola1 on square 0. This means that there is some sequence of symbols that can be placed
initially on squares−P (n), . . . ,−1 of the tape so that all the clauses above are satisfied. Hence those
clauses constitute a positive instance ofSAT .

Conversely, supposeI is a negative instance ofD. In that case there isnocertificate forI, which means
that whateversymbols are placed on squares−P (n), . . . ,−1 of the tape, when the computation halts the
machine will not be scanninga1 on square 0. This means that the set of clauses above is not satisfiable, and
hence constitutes a negative instance ofSAT .

Thus from the instanceI of problemD we have constructed, in polynomial time, a set of clauses which
constitute a positive instance of SAT if and onlyI is a positive instance ofD. In other words, we have
convertedD into SAT in polynomial time. And sinceD was an arbitrary NP problem it follows thatanyNP
problem can be converted to SAT in polynomial time.
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5 NP-completeness

Cook’s Theorem implies that any NP problem is at most polynomially harder than SAT. This means that if
we find a way of solving SAT in polynomial time, we will then be in a position to solve any NP problem
in polynomial time. This would have huge practical repercussions, since many frequently encountered
problems which are so far believed to be intractable are NP.

This special property of SAT is calledNP-completeness. A decision problem is NP-complete if it has
the property that any NP problem can be converted into it in polynomial time. SAT was the first NP-complete
problem to be recognised as such (the theory of NP-completeness having come into existence with the proof
of Cook’s Theorem), but it is by no means the only one. There are now literally thousands of problems,
cropping up in many different areas of computing, which have been proved to be NP-complete.

In order to prove that an NP problem is NP-complete, all that is needed is to show that SAT can be con-
verted into it in polynomial time. The reason for this is that the sequential composition of two polynomial-
time algorithms is itself a polynomial-time algorithm, since the sum of two polynomials is itself a poly-
nomial.3. Suppose SAT can be converted to problemD in polynomial time. Now take any NP problem
D′. We know we can convert it into SAT in polynomial time, and we know we can convert SAT intoD in
polynomial time. The result of these two conversions is a polynomial-time conversion ofD′ intoD. Since
D′ was an arbitrary NP problem, it follows thatD is NP-complete.

We illustrate this by showing that the problem 3SAT is NP-complete. This problem is similar to SAT,
but restricts the clauses to at most three schematic letters each:

Given a finite set{C1, C2, . . . , Cn} of clauses, each of which contains at most three schematic
letters, determine whether there is an assignment of truth-values to the schematic letters appear-
ing in the clauses which makes all the clauses true.

3SAT is obviously NP (since it is a special case of SAT, which is NP). It turns out to be straightforward to
convert an arbitrary instance of SAT into an instance of 3SAT with the same satisfiability property.

Take any clause written in disjunctive form asC ≡ L1 ∨ L2 ∨ . . . ∨ Ln, wheren > 3 and eachLi is a
literal. We replace this byn− 2 new clauses, usingn− 3 new schematic lettersX1, . . . , Xn−3, as follows:

L1 ∨ L2 ∨X1

X1 → L3 ∨X2

X2 → L4 ∨X3
...

Xn−4 → Ln−2 ∨Xn−3

Xn−3 → Ln−1 ∨ Ln

Call the new set of clausesC. Any truth-assignment to the schematic letters appearing in theLi which
satisfiesC can be extended to theXi so thatC is satisfied, and conversely any truth-assignment which
satisfiesC also satisfiesC.

To prove this, suppose that a certain truth-assignment satisfiesC. Then it satisfies at least one of the
literals appearing inC, sayLk. Now assigntrue toX1, X2, . . . , Xk−2 andfalse toXk−1, . . . , Xn−3. Then
all the clauses inC are satisfied: fori = 1, 2, . . . , k − 2, the ith clause is satisfied becauseXi is true; the
(k − 1)th clause is satisfied becauseLk is true; and forj = k, k + 1, . . . , n − 2 thejth clause is satisfied
becauseXj−1 (appearing in the antecedent) is false.

Conversely, suppose we have a truth-assignment satisfyingC: each clause inC is satisfied. Suppose
L1, . . . , Ln−2 are all false. Then it is easy to see that all theXi must be true; in particularXn−3 is true, so
eitherLn−1 orLn is true. Thus in any event at least one of theLi is true, and henceC is true.

3For example, the sum ofx5 − 5x3 + 3 and4x4 − x2 − 8 is x5 + 4x4 − 5x3 − x2 − 5
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If we take an instance of SAT and replaceall the clauses containing more than three literals by clauses
containing exactly three in the way described above, we end up with an instance of 3SAT which is satis-
fiable if and only if the original instance is satisfiable. Moreover, the conversion can be accomplished in
polynomial time. It follows that 3SAT, like SAT, is NP-complete.

6 P=NP?

We have seen that a problem is NP-complete if and only if it is NP and any NP problem can be converted
into it in polynomial time. (A problem satisfying the second condition is calledNP-hard; so NP-complete
means NPandNP-hard.) It follows from this that all NP-complete problems are mutually interconvertible
in polynomial time. For ifD1 andD2 are both NP-complete, thenD1 can be converted intoD2 by virtue
of the fact thatD1 is NP andD2 is NP-hard, andD2 can be converted intoD1 by virtue of the fact thatD2

is NP andD1 is NP-hard. Thus as far as computational complexity is concerned, all NP-complete problems
agree to within some polynomial amount of difference.

But what is the computational complexity of these problems? If any one NP-complete problem can be
shown to be of polynomial complexity, then by the above they all are. If on the other hand any one NP-
complete problem can be shown not to be solvable in polynomial time, then by the above, none of them are
so solvable. All NP-complete problems stand or fall together.

The current state of our knowledge is this: we know how to solve NP-complete problems inexponential
time, but there is no NP-complete problem for which any algorithm is known that runs in less than expo-
nential time. On the other hand, no-one has ever succeeded in proving that it is not possible to solve an
NP-complete problem faster than that. This implies, of course, that no-one has proved that NP-complete
problems can’t be solved inpolynomialtime.

If we could solve NP-complete problems in polynomial time, then the whole class NP would collapse
down into the class P of problems solvable in polynomial time. This is because the NP-complete problems
are thehardestof all NP problems, and if they are polynomial then all NP problems are polynomial. Thus the
question of whether or not there are polynomial algorithms for NP-complete problems has become known
as the “P=NP?” problem. Most people who have an opinion on this believe that the answer is no, that is,
NP-complete problems are strictly harder than polynomial problems.

All this assumes, of course, the Turing model of computation, which applies to all existing computers.
However, as suggested above, if we had access to unlimited parallelism, we could solve any NP problem
(including therefore the NP-complete problems) in polynomial time. Existing computers do not provide us
with such parallelism; but if the current work on Quantum Computation comes to fruition, then it may be that
a new generation of computers will have exactly such abilities, and if that happens, then everything changes.
It would not solve the classic P=NP question, of course, because that question concerns the properties of
Turing-equivalent computation; what would happen is that the theory of Turing-equivalent computation
would suddenly become much less relevant to practical computing concerns, making the question only of
theoretical interest.
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