Lecture 16:

Computation Tree Logic (CTL)

Programme for the upcoming lectures

Introducing CTL

Basic Algorithms for CTL

CTL and Fairness; computing strongly connected components

Basic Decision Diagrams

Tool demonstration: SMV

LTL and CTL

LTL (linear-time logic)
e Describes properties of individual executions.

e Semantics defined as a set of executions.

CTL (computation tree logic)

e Describes properties of a computation tree: formulas can reason about many
executions at once. (CTL belongs to the family of branching-time logics.)

e Semantics defined in terms of states.

Computation tree

Let 7 = (S, —, sY) be a transition system.
Intuitively, the computation tree of 7 is the acyclic unfolding of 7.

Formally, we can define the unfolding as the least (possibly infinite) transition
system (U, —’, u9) with a labelling I : U — S such that

u% € U and I (u9) = sO;
ifueU, I(u) =s,ands — s’ forsome u, s, s/,

then there is u’ € U withu —’ u’ and I(u’) = s/;

u® does not have a direct predecessor, and all other states in U have exactly
one direct predecessor.

Note: For model checking CTL, the construction of the computation tree will not
be necessary. However, this definition serves to clarify the concepts behind CTL.

4

Computation tree: Example

A transition system and its computation tree (labelling | given in blue):

650

sl s2

W
\ 0 s da fo
© , /8?2\ \

'/ c o o

CTL: Overview

CTL = Computation-Tree Logic

Combines temporal operators with quantification over runs

Operators have the following form:

X next
there exists an execution E F finally
A G

for all executions globally
U until

(and possibly others)

CTL: Syntax

We define a minimal syntax first. Later we define additional operators with the
help of the minimal syntax.

Let AP be a set of atomic propositions: The set of CTL formulas over AP is as
follows:

if a € AP, then ais a CTL formula;

If $1, po are CTL formulas, then so are

=1, 1V P2, EX ¢4, EG ¢4, »1 EU ¢5

CTL: Semantics

Let K = (S, —,sY, AP, v) be a Kripke structure.

We define the semantic of every CTL formula ¢ over AP w.r.t. IC as a set of
states [[¢] ., as follows:

Ta] v(a) fora € AP

© =
[-o1lx = S\ loilk
[¢1V P2l = lo1llcU lo2lk
[EX¢1lx = {s|thereisatst.s —tandt € [¢1]i}
TEG ¢1]lx = {s|thereisarun pwith p(0) =s

and p(i) € [¢1]lc foralli > 0}
[¢1 EU ¢o]lx = {s|thereisarun pwith p(0) =sandk > 0 s.t.

p(i) € [¢1]c foralli < k and p(k) € [¢2]k }

We say that K satisfies ¢ (denoted K |= ¢) iff sO € [¢] «.

We declare two formulas equivalent (written ¢1 = ¢») iff for every Kripke
structure IC we have [¢1]lx = [¢2] k-

In the following, we omit the index /C from [[-] ¢ if K is understood.

CTL: Extended syntax

»1 N\ P2

true
false

»1 EW ¢5
EF ¢

Other logical and temporal operators (e.g. —), ER, AR, ...

—(—¢1 V ~¢2)
aV —a

—true

EG ¢1 V (¢1 EU ¢5)
true EU ¢

AX ¢
AG o
AF ¢
¢1 AW ¢o
¢1 AU 9o

~EX —¢
~EF —¢
~EG ¢
=(=¢2 EU —=(¢1 V ¢2))
AF ¢o A (91 AW ¢2))

may also be defined.

10

CTL: Examples

We use the following computation tree as a running example (with varying
distributions of red and black states):

In the following slides, the topmost state satisfies the given formula if the black
states satisfy p and the red states satisfy g.

11

‘|'.O.
‘|v o
‘|‘ o

12

o O
@\ -0

SO
@N?@ o

o Q+...
Sy

15

SO
0\ o0

SO
@\ 002

SO
@\ 002

e O
CNQ Noudl

Solving nested formulas: Is sg € [[AF AG X]|?

s6 s/

=

To compute the semantics of formulas with nested operators, we first compute

the states satisfying the innermost formulas; then we use those results to solve
progressively more complex formulas.

In this example, we compute [[x], [AG x]|, and [AF AG x]|, in that order.

20

Bottom-up method (1): Compute [[x]

s6 s/

(z) (1)

s3 /
s4 s5 i
7 I e

s2

ly.z}

21

Bottom-up method (2): Compute [AG X]]

s6 s/

22

Bottom-up method (3): Compute [AF AG X]|

s6 s’/

23

Example: Dining Philosophers

’
hal
3 \QQO/ 2

/(e

< F—

DR

Five philosophers are sitting around a table, taking turns at thinking and eating.

We shall express a couple of properties in CTL. Let us assume the following
atomic propositions:

e; = philosopher i is currently eating
fi = philosopher i has just finished eating

24

“Philosophers 1 and 4 will never eat at the same time.”

25

“Philosophers 1 and 4 will never eat at the same time.”

AG—-(e1 Ney)

“Whenever philosopher 4 has finished eating, he cannot eat again until
philosopher 3 has eaten’”

26

“Philosophers 1 and 4 will never eat at the same time.”

AG ﬂ(el A\ 64)

“Whenever philosopher 4 has finished eating, he cannot eat again until
philosopher 3 has eaten’”

AG(fg — (—e4 AW e3))

“Philosopher 2 will be the first to eat.”

27

“Philosophers 1 and 4 will never eat at the same time.”

AG ﬂ(el A\ 64)

“Whenever philosopher 4 has finished eating, he cannot eat again until
philosopher 3 has eaten’”

AG(fg — (—e4 AW e3))

“Philosopher 2 will be the first to eat.”

—-(e1veszVvesgVves) AUes

28

Expressiveness of CTL and LTL (1/4)

CTL and LTL have a large overlap, i.e. properties expressible in both logics.
Examples:

Invariants (e.g., “p never holds.”)

AG—p or G—p

Reactivity ("Whenever p happens, eventually g will happen.”)

AG(p —- AFq) o G(p—Fq)

29

Expressiveness of CTL and LTL (2/4)

CTL considers the whole computation tree whereas LTL only considers individual
runs. Thus CTL allows to reason about the branching behaviour, considering
multiple possible runs at once. Examples:

The CTL property AG EF p (“reset property”) is not expressible in LTL.

The CTL property AF A X p distinguishes the following two systems, but the LTL
property F X p does not:

O X 00 0

O
O

30

Expressiveness of CTL and LTL (3/4)

Even though CTL considers the whole computation tree, its state-based
semantics is subtly different from LTL. Thus, there are also properties
expressible in LTL but not in CTL. Examples:

The LTL property F G p Is not expressible in CTL:
))
s0 s s2

KEFGp but ¥ AFAG)D

31

Expressiveness of CTL and LTL (4/4)

Also, fairness conditions are not directly expressible in CTL:

(GFP1 AGFp2) — ¢

However, as we shall see later, there is another way to extend CTL with fairness
conditions.

Conclusion: The expressiveness of CTL and LTL is incomparable; there is an
overlap, and each logic can express properties that the other cannot.

Remark: There is a logic called CTL* that combines the expressiveness of CTL
and LTL. However, we will not deal with it in this course.

32

