
Lecture 16:

Computation Tree Logic (CTL)

1

Programme for the upcoming lectures

Introducing CTL

Basic Algorithms for CTL

CTL and Fairness; computing strongly connected components

Basic Decision Diagrams

Tool demonstration: SMV

2

LTL and CTL

LTL (linear-time logic)

• Describes properties of individual executions.

• Semantics defined as a set of executions.

CTL (computation tree logic)

• Describes properties of a computation tree: formulas can reason about many
executions at once. (CTL belongs to the family of branching-time logics.)

• Semantics defined in terms of states.

3

Computation tree

Let T = 〈S,→, s0〉 be a transition system.
Intuitively, the computation tree of T is the acyclic unfolding of T .

Formally, we can define the unfolding as the least (possibly infinite) transition
system 〈U,→′, u0〉 with a labelling l : U → S such that

u0 ∈ U and l(u0) = s0;

if u ∈ U, l(u) = s, and s → s′ for some u, s, s′,
then there is u′ ∈ U with u →′ u′ and l(u′) = s′;

u0 does not have a direct predecessor, and all other states in U have exactly
one direct predecessor.

Note: For model checking CTL, the construction of the computation tree will not
be necessary. However, this definition serves to clarify the concepts behind CTL.

4

Computation tree: Example

A transition system and its computation tree (labelling l given in blue):

s0

s1 s2

... ...

... ...

s1 s2

s0 s1 s1

s2s1

s0

...

... ...

5

CTL: Overview

CTL = Computation-Tree Logic

Combines temporal operators with quantification over runs

Operators have the following form:

Q T
X
F
G
U

E
A

next
finally
globally
until

there exists an execution
for all executions

(and possibly others)

6

CTL: Syntax

We define a minimal syntax first. Later we define additional operators with the
help of the minimal syntax.

Let AP be a set of atomic propositions: The set of CTL formulas over AP is as
follows:

if a ∈ AP, then a is a CTL formula;

if φ1, φ2 are CTL formulas, then so are

¬φ1, φ1 ∨ φ2, EXφ1, EGφ1, φ1 EU φ2

7

CTL: Semantics

Let K = (S,→, s0, AP, ν) be a Kripke structure.

We define the semantic of every CTL formula φ over AP w.r.t. K as a set of
states [[φ]]K, as follows:

[[a]]K = ν(a) for a ∈ AP

[[¬φ1]]K = S \ [[φ1]]K

[[φ1 ∨ φ2]]K = [[φ1]]K ∪ [[φ2]]K

[[EXφ1]]K = { s | there is a t s.t. s → t and t ∈ [[φ1]]K }
[[EGφ1]]K = { s | there is a run ρ with ρ(0) = s

and ρ(i) ∈ [[φ1]]K for all i ≥ 0 }
[[φ1 EU φ2]]K = { s | there is a run ρ with ρ(0) = s and k ≥ 0 s.t.

ρ(i) ∈ [[φ1]]K for all i < k and ρ(k) ∈ [[φ2]]K }

8

We say that K satisfies φ (denoted K |= φ) iff s0 ∈ [[φ]]K.

We declare two formulas equivalent (written φ1 ≡ φ2) iff for every Kripke
structure K we have [[φ1]]K = [[φ2]]K.

In the following, we omit the index K from [[·]]K if K is understood.

9

CTL: Extended syntax

φ1 ∧ φ2 ≡ ¬(¬φ1 ∨ ¬φ2) AXφ ≡ ¬EX¬φ

true ≡ a ∨ ¬a AGφ ≡ ¬EF¬φ

false ≡ ¬true AFφ ≡ ¬EG¬φ

φ1 EW φ2 ≡ EGφ1 ∨ (φ1 EU φ2) φ1 AW φ2 ≡ ¬(¬φ2 EU ¬(φ1 ∨ φ2))

EFφ ≡ true EU φ φ1 AU φ2 ≡ AFφ2 ∧ (φ1 AW φ2))

Other logical and temporal operators (e.g. →), ER, AR, . . . may also be defined.

10

CTL: Examples

We use the following computation tree as a running example (with varying
distributions of red and black states):

{p}

{p}

{q}

...

...

...

...

...

...
{q}

In the following slides, the topmost state satisfies the given formula if the black
states satisfy p and the red states satisfy q.

11

...

...

...

...

...

...

AG p

12

...

...

...

...

...

...

AF p

13

...

...

...

...

...

...

AX p

14

...

...

...

...

...

...

p AU q

15

...

...

...

...

...

...

EG p

16

...

...

...

...

...

...

EF p

17

...

...

...

...

...

...

EX p

18

...

...

...

...

...

...

p EU q

19

Solving nested formulas: Is s0 ∈ [[AF AG x]]?

{y,z}
s2

s0
{x,y,z}

s4
{y}

{z}
s6

s3
{x}

s1
{x,y}

s7
{ }

s5
{x,z}

To compute the semantics of formulas with nested operators, we first compute
the states satisfying the innermost formulas; then we use those results to solve
progressively more complex formulas.

In this example, we compute [[x]], [[AG x]], and [[AFAG x]], in that order.

20

Bottom-up method (1): Compute [[x]]

{y}

{z}

s3

{ }

s7

s5

s1

{y,z}

s4

s6

s0

s2
{x,z}

{x,y}

{x,y,z} {x}

21

Bottom-up method (2): Compute [[AG x]]

{y}

{z}

{x}

s3

{ }

s7

s5

s1

{y,z}

s4
{x,y,z}

s6

s0

s2
{x,z}

{x,y}

22

Bottom-up method (3): Compute [[AF AG x]]

{z}

{x}

s3

{ }

s7

s5

s1

s4

s6

s0

s2
{y} {x,z}

{x,y}{y,z}

{x,y,z}

23

Example: Dining Philosophers

1

2

34

5

Five philosophers are sitting around a table, taking turns at thinking and eating.

We shall express a couple of properties in CTL. Let us assume the following
atomic propositions:

ei =̂ philosopher i is currently eating

fi =̂ philosopher i has just finished eating

24

“Philosophers 1 and 4 will never eat at the same time.”

AG¬(e1 ∧ e4)

“Whenever philosopher 4 has finished eating, he cannot eat again until
philosopher 3 has eaten.”

AG(f4 → (¬e4 AW e3))

“Philosopher 2 will be the first to eat.”

¬(e1 ∨ e3 ∨ e4 ∨ e5) AU e2

25

“Philosophers 1 and 4 will never eat at the same time.”

AG¬(e1 ∧ e4)

“Whenever philosopher 4 has finished eating, he cannot eat again until
philosopher 3 has eaten.”

AG(f4 → (¬e4 AW e3))

“Philosopher 2 will be the first to eat.”

¬(e1 ∨ e3 ∨ e4 ∨ e5) AU e2

26

“Philosophers 1 and 4 will never eat at the same time.”

AG¬(e1 ∧ e4)

“Whenever philosopher 4 has finished eating, he cannot eat again until
philosopher 3 has eaten.”

AG(f4 → (¬e4 AW e3))

“Philosopher 2 will be the first to eat.”

¬(e1 ∨ e3 ∨ e4 ∨ e5) AU e2

27

“Philosophers 1 and 4 will never eat at the same time.”

AG¬(e1 ∧ e4)

“Whenever philosopher 4 has finished eating, he cannot eat again until
philosopher 3 has eaten.”

AG(f4 → (¬e4 AW e3))

“Philosopher 2 will be the first to eat.”

¬(e1 ∨ e3 ∨ e4 ∨ e5) AU e2

28

Expressiveness of CTL and LTL (1/4)

CTL and LTL have a large overlap, i.e. properties expressible in both logics.
Examples:

Invariants (e.g., “p never holds.”)

AG¬p or G¬p

Reactivity (“Whenever p happens, eventually q will happen.”)

AG(p → AF q) or G(p → F q)

29

Expressiveness of CTL and LTL (2/4)

CTL considers the whole computation tree whereas LTL only considers individual
runs. Thus CTL allows to reason about the branching behaviour, considering
multiple possible runs at once. Examples:

The CTL property AGEF p (“reset property”) is not expressible in LTL.

The CTL property AFAX p distinguishes the following two systems, but the LTL
property FX p does not:

{p}

{p}

{p}

{p}

30

Expressiveness of CTL and LTL (3/4)

Even though CTL considers the whole computation tree, its state-based
semantics is subtly different from LTL. Thus, there are also properties
expressible in LTL but not in CTL. Examples:

The LTL property FG p is not expressible in CTL:

s0

{ }{p}

s1 s2

{p}

K |= FG p but K 6|= AFAG p

31

Expressiveness of CTL and LTL (4/4)

Also, fairness conditions are not directly expressible in CTL:

(GF p1 ∧GF p2) → φ

However, as we shall see later, there is another way to extend CTL with fairness
conditions.

Conclusion: The expressiveness of CTL and LTL is incomparable; there is an
overlap, and each logic can express properties that the other cannot.

Remark: There is a logic called CTL∗ that combines the expressiveness of CTL
and LTL. However, we will not deal with it in this course.

32

