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Abstract. Traditional approaches to the measurement
of performance for CAD algorithms involve the use of
sets of so-called “benchmark circuits.” In this paper, we
demonstrate that current procedures do not produce re-
sults which accurately characterize the behavior of the
algorithms under study. Indeed, we show that the ap-
parent advances in algorithms which are documented by
traditional benchmarking may well be due to chance,
and not due to any new properties of the algorithms. As
an alternative, we introduce a new methodology for the
characterization of CAD heuristics which employs well-
studied design of experimentsmethods. We show through
numerous examples how such methods can be applied to
evaluate the behavior of heuristics used in BDD variable
ordering.

Key words: Benchmarking – BDD – Design of experi-
ments

1 Introduction

The choice of BDD variable order has a profound im-
pact on the size of the BDD data structure. Determin-
ing an optimal variable ordering is an NP-hard problem
upon which much research has focused, e.g., [1–3]. De-
spite the many extensions to the basic decision diagram
concept, outlined in [4], the ROBDD (Reduced-Order
BinaryDecisionDiagram) form remains the most widely
used variant. Evaluation of the quality of static and dy-
namic orderings of ROBDDs has typically been reported
in terms of the peak or final size of the data structure
for sets of “benchmark” circuits [5–7]. However, as we
will demonstrate, these results are subject to serious ex-

perimental error, and often do not represent the general
behavior of the ordering algorithms.

We introduce methods rooted in the design of experi-
ments, first formalized in [8], to evaluate the properties of
variable ordering heuristics. Our approach is radically dif-
ferent from the ones reported in the past, including [2, 9].
Rather than evaluating the algorithms on the basis of
relatively few unrelated instances of known benchmark
circuits, such as available in [5–7], we evaluate the algo-
rithms on the basis of a relatively large number of related
instances of circuits, each belonging to an equivalence
class. Any circuit from the standard benchmark sets, or
indeed any circuit at all, can serve as a reference circuit
to form an equivalence class in the proposed experiments.
In this paper, we utilize a simple isomorphism class gen-
erated from a reference circuit in order to illustrate the
experimental principles. The background and a broader
context for this approach is detailed in [10–13].

The paper is organized as follows: in Sect. 2 we in-
troduce the fundamental ideas of design of experiments,
both in general terms and as specifically applied to the
evaluation of BDD ordering heuristics.

In Sect. 3 we review the traditional methodology used
in CAD algorithm evaluation, and highlight its shortcom-
ings through illustrative examples.

In Sect. 4, we give an overview of recent work on func-
tion classification and discuss the problem of selecting
appropriate equivalence classes.

The main conclusions of the paper and directions for
future research are summarized in Sect. 5.

2 Design of experiments

NP-hard problems, such as optimal variable ordering for
BDDs, are solved by devising a polynomial-time heuris-
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tic, generally with no guarantee whatsoever of the quality
of the solution. Changing the starting point for the prob-
lem instance can induce unpredictable variability of re-
sults when experiments are repeated. To systematically
study the behavior of such heuristics, we employ the fun-
damental principles of experimental design, randomiza-
tion, replication, and organization to reduce error, first
formalized by R.A. Fisher in the 1920s when analyzing
problems in agriculture [8]. In the context of experimental
evaluation of algorithms, these principles are embodied in
the creation of a circuit equivalence class, and repetition
of the experiments for each member in the class.

2.1 DoE methodology for CAD experiments

Figure 1 illustrates a generic flow for the type of experi-
ments presented in this paper. The principal abstractions
of such an experiment are as follows:

1. Circuit equivalence classes.To “organize to reduce
error,” it is necessary to evaluate the algorithm for
a set of closely related circuits. In biomedical experi-
ments, a class consists of, for example, a set of sub-
jects with closely controlled characteristics, such as
sex, age, weight, etc. In CAD experiments, we create
classes of circuits which are invariant in certain im-
portant properties, such as gate count, input and out-
put counts, fanin and fanout distributions, entropy,
etc. Definitions of sufficiently discriminating graph-
based invariants that support generation of circuit
equivalence classes for experimental design are an ac-
tive area of research [14]. In this paper, we focus on the
logically equivalent isomorphism equivalence classes,
discussed in the next section. For more context on the
entropy of Boolean functions, see Appendix A.

2. Treatments. In medicine, a “treatment” may consist
of the application of a drug to the subjects in the ex-
perimental group, with the objective of inducing some
desired response ( e.g., reduction of blood pressure).
In CAD experiments, a treatment is the application
of some algorithm to each member of a circuit equiva-
lence class, with the objective of minimizing some cost
function.

Design of Experiments to Compare Graph-Based Algorithms
Class  ANY = SAME{#_of_nodes, #_of_edges,  #_of_perturbations, ...}  

Cost Index: crossing number, BDD size, logic area & level, layout area, ...  
     

class ANY

circuits

cost index

circuits

EVAL
apply

Algorithm_i

EVAL

circuits

cost index

apply
Algorithm_k

Algorithm_i == Treatment_i  

Fig. 1. Generic design of experiments flow for comparing two
algorithms

3. Evaluation. In medicine, “evaluation” might mean
measuring the blood pressure of the experimental sub-
jects. In CAD experiments, evaluation of the results of
an experiment consists of calculating the values of the
cost function(s) of interest, and examining their fre-
quency distributions(s). Cost functions vary for differ-
ent CAD applications; in the experiments presented in
this paper, we tabulate the final BDD sizes for each
instance in a circuit equivalence class.

Figure 1 schematically illustrates a typical experiment
based on the ideas above: a circuit equivalence class, hav-
ing known invariant properties, is processed by two treat-
ments, algorithm_i and algorithm_k. The results are eval-
uated and displayed as histograms of the distribution of
the cost indices for each treatment. The experiments in
this paper follow this general flow. Other types of experi-
mental flows used in CAD algorithm studies are discussed
in [12].

2.2 Definition of circuit equivalence classes

In this section, we formalize the notion of a circuit equiv-
alence class. A circuit netlist is represented as a directed
graph G= (V,E) comprised of a set V of vertices repre-
senting the circuit elements (typically, gates) and a set E
of edges representing the connections among the vertices.
A circuit equivalence class consists of a set of replicas of
a reference circuit, Gr, which have been randomly modi-
fied according to specific rules for the class. We next de-
fine two classes, the isomorphism class and the signature
invariant class.

1. Isomorphism class. The most fundamental circuit
equivalence class is the isomorphism class, consisting
of circuits which are logically identical and graph-
isomorphic instances of a reference circuit. The class is
constructed as follows:

– Starting with a reference circuit Gr, create a fam-
ily of identical circuits with randomly reordered
netlists.

– For each instance in the class, replace the original
variable labels with randomly generated character
strings.

The isomorphism class is formally defined as follows:

Reference Circuit: Gr = (V,E) (1)

Reordered, Relabeled: V ′ = rr(V )

Circuit Instance: Gi = (V ′, E)

Isomorphism Class:Giso ={Gi|i= 1 . . . n}

The cost function associated with an algorithm over
an isomorphism class has a characteristic distribution
with a specific mean and a variance greater than or
equal to zero. In the case where variance= 0, we say
that the algorithm is specification-order independent.
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2. Signature invariant classes. Signature invariant
classes are formally defined as follows:

Reference Circuit:Gr =(V,E) (2)

Reordered, Relabeled: V ′ = rr(V )

Circuit Instance:Gi = (V ′, E)

Signature ofGi :Hi =H(Gi)

Signature Invariant Class:Gsi ={Gi|i= 1 . . . n,

Hj =Hk,∀j, k}

This formal definition does not describe the specific
graph perturbations used to generate instances of the
reference circuit. Many different signatures have been
proposed, for instance see [15]. In Sect. 4, we discuss
the issue of selecting appropriate equivalence classes
in more depth.

2.3 Definition of experimental treatments

In this section, we describe the set of experimental treat-
ments used in this paper, tabulated in Table 1. We use the
VIS 1.1 and VIS 1.3 software[16] as a convenient frame-
work for conducting experiments, but the procedures are
general and may be readily adapted to any particular
platform. Construction and optimization of a BDD con-
sists of three distinct phases:

1. Initial ordering. An initial variable ordering must
be determined prior to construction of the BDD data
structure. Several different heuristics are available in
VIS. In some treatments, we use the natural order1

of the primary input variables as the initial order. In
these cases, the static ordering heuristics of VIS are
disabled as noted in Table 1. For other treatments, we
enable the default static ordering heuristic and VIS es-
tablishes the initial variable order.

2. BDD construction. The actual BDD data struc-
ture is constructed by one of the BDD packages in
the VIS software (for most experiments, we use the
CU [17] package). For certain treatments, we enable
dynamic variable ordering using the sift heuristic [1].
In these treatments, when the BDD data structure ex-
ceeds a predetermined size, the reordering heuristic
attempts to reduce the data structure size. In other
treatments, this feature is disabled.

3. Dynamic variable reordering. In some treatments,
we force dynamic reordering after BDD construction
is complete2. In some treatments, we do this repeat-
edly. The sift-converge procedure is used in some
treatments; this process performs sifting repeatedly
until no further improvement is achieved.

1 “Natural order” refers to the exact order in which the primary
input variables occur in the netlist file.
2 This process is commonly used in CAD applications to further
reduce BDD size after construction.

Table 1. Standard BDD treatments

Treat- Static Dynamic
ment Ordering Reordering (sift)

0 Disabled None
1 Enabled None
2 Enabled Enabled during construction
3 Enabled Enabled during construction

Forced once after construction
4 Enabled Enabled during construction

Forced twice after construction
5 Enabled Enabled during construction

Sift-converge after construction
6 Disabled Enabled during construction
7 Disabled Enabled during construction

Forced once after construction
8 Disabled Enabled during construction

Forced twice after construction
9 Disabled Enabled during construction

Sift-converge after construction

Table 1 itemizes a total of ten distinctive treatments
(BDD variable ordering algorithms) that we apply to cir-
cuit equivalence classes in this paper, showing the specific
static- and dynamic-variable ordering options selected in
each case. These represent both typical sequences used in
practical applications (e.g., treatments 3 and 4) and some
unusual cases designed to expose possible instabilities in
the algorithms (e.g., treatments 0 and 6). The details of
each treatment are as follows:

– Treatment 0 designates a treatment in which the vari-
able order is solely determined by the order of the
primary input variables, given by each instance of the
netlist in the designated class. We refer to this order
as a “natural order”, i.e., the order given by the netlist
alone. For treatment 0, it is this order, and this order
alone, which determines the size of the BDD. Since
node and input variable orders in any of the classes are
randomized3, treatment 0 is equivalent to sampling
random variable orders and reporting the resulting
BDD size.

– Treatment 1 designates a treatment in which the vari-
able order, given the natural order of the circuit in-
stance, is transformed into a new order by the static
variable ordering heuristic.

– Treatment 2 designates a treatment in which the vari-
able order, given the natural order of the circuit in-
stance, is optimized into a new order by the static vari-
able ordering algorithm, and then further optimized
concurrently with BDD construction using the “sift”
algorithm.

– Treatments 3–5 designate treatments in which the
variable order, given the natural order of the circuit in-
stance, is optimized into a new order by the succession

3 Exception: class ALU4r-in-WD, described in Sect. 2.4.
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of treatment 1, treatment 2, and a single-, a double-, or
a multiple-sifting operation, respectively.

– Treatment 6 designates a treatment in which the
variable order, given the natural order of the circuit
instance, is optimized into a new order by the “sift”
algorithm during BDD construction, bypassing the
static variable ordering algorithm. This treatment
measures the effectiveness of the dynamic reordering
algorithm in reducing the final BDD size when the
initial ordering is random.

– Treatments 7–9 are equivalent to treatments 3–5, ex-
cept for bypassing the static variable ordering algo-
rithm. These treatments also measure the effect of
the dynamic variable reordering algorithm on the final
BDD size.

2.4 Application of treatments to equivalence classes

In this section, we illustrate the use of experimental treat-
ments and circuit equivalence classes with two classes
derived from the reference circuit ALU4r4. We use two
equivalence classes, consisting of 128 instances which are
graph-isomorphic and logically equivalent to the refer-
ence circuit, as follows:

– ALU4r-in-WD. In this class, each instance is a replica
of the reference circuit, in which the netlist has simply
been randomly reordered.

– ALU4r-rn-WD. Each instance is a replica of the refer-
ence circuit, in which the netlist has been randomly
reordered, and the variables have been randomly rela-
beled. This is a true isomorphism class, as defined in
equation (1).

Figure 2 summarizes the distributions of final sizes for
1,536 individual BDDs5, constructed by VIS 1.1 from the
two equivalence classes above, under treatments defined
in Table 1. This experiment establishes the importance of
using isomorphism classes as defined in equation (1) in
any experiments with BDD algorithms.

2.5 Statistical analysis of results

In the context of this paper, the basic statistical deci-
sion we want to make involves comparison of two treat-
ments. The objective of each treatment is to reduce the
size of each BDD, given an equivalence class of Boolean
functions. We use hypothesis testing and evaluate the
t-statistic to compare the merits of two treatments,

4 Based on the standard 74181 circuit. A schematic and descrip-
tion of this circuit may be found in [18]. The version used here is
based on a textbook schematic of a 4-bit ALU circuit, indepen-
dently encoded by J. Calhoun [19], and subsequently by D. Ghosh
in 1998 and verified against each other. The standard benchmark
circuit alu4 in [7] differs from this version in three minterms, veri-
fied by J. Harlow in 1998.
5 2 classes of 128 graph instances, processed under 6 different
treatments, resulting in 1,536 individual BDDs.

a methodology described in introductory texts on statis-
tics [20, 21]. A brief tutorial and an illustrative example
about this statistic is included in the Appendix. Exam-
ples of more advanced methods about multiple compar-
isons of treatments are described in [22].

For classes of 128 instances reported in this paper, the
mean values of two distributions are significantly differ-
ent, at the 95% confidence level, if |t| ≥ 1.969. In other
words, when |t| ≥ 1.969, the differences between the ob-
served values of two sample sets are due to the heuristics,
and not to due to chance.

The means and standard deviation of the distribu-
tions of BDD sizes for all ten treatments, for both classes
ALU4r-in-WD and ALU4r-rn-WD, are tabulated in the
table at the left of Fig. 2. Using these values, the t-
statistic may be computed for any pair of distributions
to test for significant differences in the means. For in-
stance, for class alu4r-rn-WD, we compute t= 0.266 for
the distributions of treatment 0 and treatment 1; thus, we
accept the hypothesis H0 at the significance level of 0.05.
In other words, we are 95% confident that for the equiva-
lence classes in question, treatment 1 is not significantly
different from treatment 0; the apparent differences ob-
served in the figure are due to chance rather than to any
properties of the algorithms.

Similarly, for class ALU4r-rn-WD, we calculate t= 7.20
for treatments 3 and 4, indicating that the observed dif-
ference between the means of the two distributions is sig-
nificant at the 95% confidence level; the difference is due
not to chance, but to the performance of the heuristic
(here, the second post-construction sift) being examined.

We have described here only one of the possible statis-
tical tests that may be applied in conducting experiments
on CAD algorithms. More sophisticated techniques are
described in standard texts on statistics, e.g., [20].

2.6 Lessons learned

In the experiment described in the previous section, we
established that the static variable ordering algorithm in
VIS 1.1 was sensitive to the labeling of the variables. Re-
sults for the class ALU4r-in-WD differed significantly from
those for class ALU4r-rn-WD under identical treatments
(treatment 1) in which static ordering was enabled. In
addition, results for ALU4r-in-WD differed between treat-
ments 0 and 1, where the only difference in treatment is
that the static ordering heuristic of VIS is enabled for
treatment 1. From these observations, we were able to
conclude that there was a defect in the static ordering
procedure in VIS, which was later confirmed by the de-
velopers of the software [23]. This example clearly demon-
strates the power of DoE techniques in the characteriza-
tion of CAD algorithms.

At a more general level, the observed sensitivity to
variable labeling underscores the importance of equiva-
lence class selection and randomization in any statistical
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Circuit Class Circuit Class
Treat- ALU4r-in-WD ALU4r-rn-WD

ment Sample Sample Sample Sample
Mean StD Mean StD

0 1,236.0 169.9 1,236.0 169.9

1 1,206.0 0.0 1,268.1 159.4

2 1,206.0 0.0 1,268.1 159.4

3 598.0 0.0 707.9 88.6

4 577.0 0.0 637.4 65.7

5 576.0 0.0 631.3 58.7

6 1,236.0 168.9 1,236.0 168.9

7 710.3 74.3 710.3 74.3

8 643.6 63.7 643.6 63.7

9 631.3 62.9 631.3 62.9

Summary of statistics for Treatments 0–9.

0 500 1000 1500 2000
0

25

50

75

100

125

150

BDD Size (nodes)

0 500 1000 1500 2000
0

25

50

75

100

125

150

BDD Size (nodes)

0 500 1000 1500 2000
0

25

50

75

100

125

150

BDD Size (nodes)

0 500 1000 1500 2000
0

25

50

75

100

125

150

BDD Size (nodes)

(d)
 ALU4-rn-

WD

(a)
 ALU4-in-

WD

Treatment 1
Treatment 2

Treatment 1
Treatment 2

Treatment
 4

Treatment 4

Treatment 8

Treatment 0
Treatment 6

Treatment 0
Treatment 6

Treatment 8

(b)
 ALU4-rn-

WD

(c)
 ALU4-in-

WD

Fig. 2. BDD size (node) statistics under different variable ordering strategies, denoted as ‘treatments’. Some treatments of the
ALU4r-in-WD class produce statistics that can be grossly misleading. Distributions of final sizes for 1,536 individual BDDs, constructed by
VIS 1.1 from two classes of isomorphic and logically equivalent circuits, under treatments defined in Table 1. Panel a shows that, for the
class ALU4r-in-WD (randomized order), all instances under treatments 1 and 2 are identical in size. Treatment 4 reduces the size of all
BDDs to a smaller size, again identical for all instances in the class. A superficial analysis of these results would suggest that the static
and dynamic ordering algorithms in VIS 1.1 are performing exactly as intended: the static algorithm is finding the same starting order for
all the circuits, and the dynamic algorithm is uniformly reducing the initial size of the BDDs. Panel b illustrates an identical procedure,
but using the isomorphism class ALU4r-rn-WD (randomized order and randomized labels). Here, the histograms show a near-Gaussian
distribution of BDD sizes under treatments 1 and 2. Treatment 4 reduces the mean size of the BDDs, as well as the variance, but clearly
the algorithms are not performing as expected. Since the only difference between the experiments in a and b is the labeling of the

variables, we have established that the static ordering algorithm is sensitive to labeling. Panels c and d illustrate a similar experiment,
differing only in the static ordering procedure. Here, the static ordering in VIS 1.1 is disabled, forcing it to use the random initial
orderings in the class members. Note that the results are now identical for either class. We conclude that the VIS 1.1 static ordering

algorithm, when confounded by random variable labels, produces results equivalent to random initial orderings

experiment. While a number of experiments with algo-
rithms in [24] have been shown to have a total lack of
sensitivity to relabeling, we have concluded that for BDD
experiments, we must:

– Lesson 1. Make no assumptions about whether the
algorithm under test is sensitive to relabeling.

– Lesson 2. Always create an equivalence class where
node order is not only randomized, but the node labels
are randomly reassigned for each instance in the class.

– Lesson 3. Recognize that many possible experiments
may be invalid, unless the observations of lessons 1 and
2 have been applied at the outset of the experiment.

3 Limitations of traditional benchmarking

In the CAD community, the performance of algorithms
is traditionally evaluated with respect to sets of “bench-
mark” circuits. The most widely-accepted of these bench-
mark sets were introduced at the International Sympo-
sium on Circuits and Systems (ISCAS) in 1985 and 1989,

and subsequently supplemented by other sets gathered
and distributed at a series of workshops sponsored by
the Association for Computing Machinery (ACM) and
the Microelectronics Center of North Carolina (MCNC).
Individual sets of circuits are often referenced in the
literature by the forum at which they were introduced
(e.g., “the ISCAS 85 benchmarks” [5]), or collectively
referred to as “the ISCAS benchmarks”, “the MCNC
benchmarks”, etc. A summary of well-known bench-
marks in the CAD community was recently published
in [26].

Most of the benchmark sets in common use consist
of collections of unrelated circuits, represented as netlists
(graph representations of the interconnection of logic
gates implementing the circuit). It is common practice in
the CAD literature to include a tabulation of the results
of a particular algorithm on each member of one or more
of these benchmark sets, and to compare those results
to the work of others. In this section, we illustrate the
contrast between this approach and our proposed DoE
method.
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Fig. 3. Results of a hypothetical “contest” using single instances
of typical benchmark circuits. Results of a hypothetical “contest”
between two researchers. Each contestant is given two circuits; the
object of the contest is to evaluate the final BDD size for each
circuit, and report which circuit is “larger”. The contestants are
not told that one circuit is a version of the C499 benchmark and
the other is a version of C1355 [5], which are logically identical
circuits. The contestants construct BDDs using the CMU BDD
package [25] in VIS, and treatment 2. Contestant 1 reports that
C1355 is smaller, while contestant 2 reports the C499 is the

smaller circuit. Since both contestants used the same algorithm
and the same treatment, on logically identical circuits, why are

the results different?

3.1 A traditional benchmarking experiment

Figure 3 illustrates the results of a hypothetical “con-
test” between two researchers. This example was con-
structed using actual data from isomorphism classes of
the benchmark circuits cited. For the “contest,” we chose
specific instances from the isomorphism classes to illus-
trate a major deficiency in the traditional approach to
benchmarking: specific, isolated instances randomly se-
lected from an isomorphism class cannot characterize the
performance of an algorithm. This example represents
precisely the perils in the way in which benchmark cir-
cuits are typically defined and used, and how results
are reported. We assert that many of the results and
“improvements” reported in the literature may well be
due to chance, and not due to the actual differences in
the algorithms.

3.2 Analysis of correlations using DoE

We now discuss a more extensive characterization of an
isomorphism class, to contrast DoE methods with tradi-
tional benchmarking methods. The C499 and C1355 cir-
cuits from the ISCAS 85 set [5], which are two very differ-
ent logic implementations of the same function, are used
to illustrate the shortcomings of traditional methods6.

1. Correlation between logically identical circuits.
The correlation plots in Fig. 4 present actual data for
the isomorphism classes from which the samples in
Fig. 3 were selected.We observe that there is little cor-
relation between the BDD sizes in isomorphism classes
of two logically identical circuits. For the contest, we

6 Complete descriptions and circuit diagrams for these circuits
and others in the benchmark suites can be found in [18].

25000

35000

45000

55000

65000

25000 35000 45000 55000 65000

C
13

55
 B

D
D

 S
iz

e 
(n

od
es

)

C499 BDD Size (nodes)

25000

35000

45000

55000

65000

25000 35000 45000 55000 65000

C
13

55
 B

D
D

 S
iz

e 
(n

od
es

)

C499 BDD Size (nodes)

(a) CU
Treatment 2

(b) CMU
Treatment 2

Fig. 4. Correlation between isomorphism classes of two logically
identical circuits, under two BDD packages. Actual data for the
isomorphism classes from which the samples in Fig. 3 were

selected. Each point represents a randomly chosen pair of circuit
instances, one from each class, representing the way in which

benchmark circuits are actually selected in practice. The obvious
lack of correlation between pairs of logically identical circuits
illustrates a major deficiency in traditional benchmarking

practice. Inspection of these plots also suggests that there may be
differences in the performance of the two BDD packages. Such an
observation may be formally tested for significance by comparing

the distributions using the t-test, as described in Sect. 2.5

deliberately chose outliers from these distributions
to illustrate the point. However, the actual circuits
in all traditional benchmark sets are, in effect, cho-
sen randomly from such a hypothetical population
of representations. Without examining statistically
meaningful samples of such populations, any reported
results on the benchmark sets are subject to large,
unknown random variability.

2. Distributions for several treatments. Figure 5
presents frequency distributions for the C499 and
C1355 isomorphism classes under treatments 1, 2, and
4 for both the CU and CMU BDD packages. Tables 2,
3, and 4 illustrate the use of the t-test to determine the
significance of observed differences in the distribution
means. Further results of such tests have been pub-
lished in [13, 27], and are explored further in Sect. 4 of
this paper.

3. Correlation analysis of several treatments. Fig-
ure 6 illustrates the relationships between the distri-
butions of Fig. 5 in more detail than a simple test of
significance. The statistical tests tell us that, for in-
stance, treatments 1 and 2 give significantly different
results, but the correlation plot of Fig. 6a, for instance,
gives the additional insight that, in many instances,
the BDD size of a circuit actually increases under dy-
namic variable reordering.

4. Correlation between BDD packages. Figure 7
contrasts the behavior of one BDD package vs an-
other. Statistical tests of the observations made in
the figure are shown in Table 4. This example clearly
shows the utility of statistical tests of significance:
for the entire C499 isomorphism class, the observed
“differences” between the CU and CMU BDD pack-
ages are not statistically significant. Clearly though,
there are specific instances in the class which, if cho-
sen by chance as benchmarks, would imply a very dif-
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Fig. 5. Statistically significant report of a CAD experiment: BDD sizes for isomorphism classes of logically equivalent circuits under
treatments 1, 2, and 4. Frequency distributions for the C499 and C1355 isomorphism classes under treatments 1, 2, and 4 for both the
CU and CMU BDD packages. Tables 2, 3, and 4 illustrate the use of the t-test to test pairs of such distributions for significant differences

in their means

ferent result. Finally, note that for the C1355 class,
the difference between BDD packages is not signifi-
cant for treatment 2, but significant for treatment
4; this suggests that the dynamic variable reorder-
ing algorithm in the CMU package is less effective
than that for the CU package, in that it requires
more invocations to achieve small BDDs than the
CU package.

5. Distinguishing software releases. In [13] (and
summarized in the set of experiments above), we
demonstrated that the static ordering algorithm in
VIS 1.1 was inoperative. It was found that the actual
static order calculated by VIS for any circuit was sim-
ply the lexicographic order of the variable labels, due
to a software error. This experiment demonstrated the
importance of a properly randomized isomorphism
class, as defined in Sect. 2.2.

Given these results, we evaluated the newer VIS 1.3
release using identical procedures, and compared the
results. The difference in results for treatment 1 and 4
are summarized in Table 5; these results are explored
in more depth in [27].
Data in the top row of Table 5 have been copied from
Fig. 2 and represent results with VIS1.1. Data on the
next row represent new results with VIS1.3. The t-
test confirms that the distributions are significantly
different for treatment 1, indicating that the static or-
dering algorithm in VIS 1.3 exhibits different behavior
than in VIS 1.1. Surprisingly, not only are the differ-
ences in mean BDD size significant for treatment 4,
the VIS1.1 result is better. We conclude that, for this
example, the ‘better’ VIS 1.3 initial ordering heuristic
has not contributed to better variable ordering with
treatment 4 in VIS1.3.
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(b)
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(c)
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Fig. 6. Correlation among treatment results for isomorphism classes of logically identical circuits. Here we explore the relationships
between the distributions of Fig. 5 in more detail than a simple test of significance. Panels a and e show that treatments 1 and 2 are

uncorrelated for the C499 isomorphism class. Panels c and g illustrate that C1355 behaves similarly. Recalling the definitions of Table 1,
it can be hypothesized that (in these examples) enabling dynamic reordering during BDD construction often reduces the final BDD size.
However, in some cases this treatment actually appears to increase BDD size. While such an observation can be made visually from

correlation plots, it is important to test it statistically for significance before reaching any conclusions about the relative merits of various
treatments. Table 2 summarizes the t-test results between treatment 1 and 2. In this case, it is clear that the observed differences in

sample means between Treatements 1 and 2 are significant

Table 2. Statistical comparison of treatments 1 and 2 under VIS
1.3 for C499 and C1355 isomorphism classes, using the CMU

BDD package: panels b vs f and d vs h of Fig. 5. The large values
of t indicate that the observed differences in means between

treatments 1 and 2 are statistically significant

C499 C1355
Mean Std Dev Mean Std Dev

Treatment 1 40315 399.8 40315 399.8
Treatment 2 33066 3666 34321 3602
t-statistic 22.23 18.71

Table 3. Statistical comparison of treatments 2 and 4 under VIS
1.3 for C499 and C1355 isomorphism classes, using the CMU
BDD package: panels f vs j and h vs l of Fig. 5. The observed
differences in means are still significant for both classes

C499 C1355
Mean Std Dev Mean Std Dev

Treatment 2 33066 3666 34321 3602
Treatment 4 31811 3038 33161 2422
t-statistic 2.98 3.02

3.3 Traditional vs DoE: conclusions

The examples in the previous section are illustrations of
the types of insights that can be gained through a de-
sign of experiments approach, and the profound differ-

Table 4. Statistical comparison of treatments 2 and 4 under VIS
1.3, for C499 and C1355 isomorphism classes under CU and CMU

BDD packages. The values of t indicate that the observed
differences between the means for C1355, between the CU and
CMU packages, is statistically significant. However, the other
differences in the table are not significant, and thus indicate no
differences between the performance of the two BDD packages

C499 C1355
Mean Std Dev Mean Std Dev

Treatment 2 CU 33066 3666 34321 3602
Treatment 2 CMU 32843 3440 33805 4662
t-statistic 0.501 0.991

Treatment 4 CU 31811 3038 33161 2422
Treatment 4 CMU 31362 2489 31179 2367
t-statistic 1.29 6.62

ences between traditional benchmarking and the DoE
approach. Here, the traditional approach would have
given results for two instances (one each for C499 and
C1355) under each treatment, or at most 20 experi-
ments for the set of treatments defined in Table 1. As
our experiments have illustrated, the results of the tra-
ditional approach are likely to be invalid because of the
random choice of test cases. By contrast, the DoE ap-
proach represents 2,560 experiments (ten treatments of
two classes of 128 instances each), giving the ability to
statistically quantify results, including the variability of
the results.
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Fig. 7. Correlation between results for isomorphism classes of logically identical circuits, under two BDD packages. Here, the behavior of
one BDD package vs another is illustrated. For either circuit isomorphism class, treatment 1 delivers equivalent results (panels a and d).
Panels b and e illustrate that treatment 2 increases the variance of BDD size for the classes; furthermore, there appear to be marked
differences in results for the two BDD packages. Panels c and f show the result of treatment 4, a common procedure used in BDD

variable ordering applications. The difference between the two BDD packages is still apparent, but clearly the “stronger” treatment is
reducing the final BDD size and variance in most cases. However, note that in some cases, there is still a large difference in final size
between some class members, underscoring the importance of performing experiments with entire classes rather than with a single

randomly selected instances from the class

Table 5. Statistical comparison of treatments 1 and 4 for
ALU4r_rn_WD class under two software releases. The t-test
confirms that the distributions are significantly different for

treatment 1, indicating that the static ordering algorithm in VIS
1.3 exhibits different behavior than in VIS 1.1. Surprisingly, not

only are the differences in mean BDD size significant for
treatment 4, the VIS1.1 result is better. For this example, the
‘better’ VIS 1.3 initial ordering heuristic has not contributed to

better variable ordering with treatment 4 in VIS1.3

Treatment 1 Treatment 4
Mean Std Dev Mean Std Dev

VIS 1.1 1268.1 159.4 637.4 65.7
VIS 1.3 870.4 59.4 659.0 65.2
t-statistic 26.3 -2.63

4 Open problems and new directions

The experimental design strategy introduced in this pa-
per demonstrated that equivalence classes of logically
equivalent circuits are an essential component for con-
sistent evaluation of BDD variable ordering algorithms.
The same strategy can be applied to the evaluation of the
equivalence classes themselves, leading to refinements of
classes as well as algorithms.

The isomorphism equivalence class as defined in this
paper demonstrated the sensitivity of all current heuris-
tics to the initial variable order. Finding a minimized
BDD size with variance of 0 for any initial order is a rare
event, even for functions with number of variables as
small as five. However, even if we do find solutions with
small variance, questions to ask should include:

(1) For the isomorphism equivalence class: is the small
BDD node variance due to the algorithm or due to
some intrinsic properties of the function?

(2) For the class derived from but not equivalent to the
reference circuit: is the BDD node variance after vari-
able optimization sufficiently small to declare the cir-
cuits as members of the same equivalence class?

Answers to these questions are subject of ongoing re-
search. The notion of the entropy-invariant perturbation
is valid but the equivalence classes that are generatedmay
be too broad [15]. Further refinements of the entropy-
invariant class are necessary: additional parameters must
be identified in order to constitute a well-defined signa-
ture for narrower classes of circuits [28]. Consider two
single-output reference circuits with the same entropy
and the same support variables, one representing the be-
havior of an ALU, the other a controller. The distribu-
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tions of minimized BDD nodes sizes for the isomorphism
classes of the ALU and the controller reference circuits
are not expected to overlap. Circuits forming the equiv-
alence classes may all be different, however, they should
unambiguously exhibit the characteristic behavior of ei-
ther ALU-like circuits or controller-like circuits. Just as
for the two isomorphism classes, the distributions of the
respective equivalence classes should not overlap. More-
over, the distribution of the ALU (controller) isomorph-
ism class should be at the center of the distribution for
its perturbation-based equivalence class. A similar prob-
lem has been addressed and effective solutions proposed
in the context of graph-based cost functions that arise in
physical design [14].

We briefly address some of these questions and be-
fore leaving the section, we will report on some surprising
answers: small variance, including the variance of 0, is in-
deed an intrinsic property of some functions, including
some that are well-known and important.

4.1 Asymptotic performance of multi-output circuits

Functions associated with multi-output circuits share the
supporting variables. A variable order that optimizes
BDD size for one function may conflict with an opti-
mized order for another function. We need to study the
performance of ordering algorithms over a range of re-
lated circuit classes, to gain insight into the scalability
of the algorithms. Specifically, we constructed variable-
output circuits from the C432 benchmark ( a 7-output
circuit) with 1, 2, . . . 6 primary outputs (all logic unique
to the removed outputs was also removed). For each such
derivative circuit, we built an isomorphism class of 128 in-
stances, and again constructed BDDs using VIS 1.3 and
a number of treatments. The results are shown in Table 6.
The results for treatments 2 and 5 were essentially iden-
tical, and only treatment 2 is shown. These results indi-
cate that the ordering heuristics of treatment 2, relative
to treatment 1, is uniformly effective across all outputs
– up to a point. Relative to the size of the mean, stan-
dard deviation for single output class is actually much
worse than the standard deviation for multiple outputs
where the mean value is much larger. The fact that in all

Table 6. Statistics of BDD sizes of C432 derivatives. Note that
treatment 5 gave no improvement over treatment 2

Primary Treatment 1 Treatment 2, 5
Outputs Mean Std Dev Mean Std Dev

1 5735 71.7 488.2 40.8
2 11593 146.3 780.9 39.0
3 17635 225.3 1014.5 50.2
4 21337 233.7 1101.4 34.4
5 27983 323.4 1260.2 46.2
6 30564 387.4 1303.1 35.2
7 30620 396.6 1313.1 31.4

cases, an ideal algorithmwould return solutions with vari-
ance of 0, leaves the experiment as a challenge for future
work. New insights will emerge by studying each output
independently of the other, and comparing the optimized
variable orders for each function.

4.2 Asymptotic performance of single-output circuits

Characterizing the performance of BDD variable ordering
algorithms in terms of single output circuits, with an in-
creasing number of input variables, is essential to under-
standing both the properties of the underlying function
and the limitations of the variable ordering algorithms.
By analyzing classes of functions that continue to be re-
lated as we increase the number of variables, we expect to
find asymptotic trends such as those shown in Fig. 8.

The trends shown in Fig. 8 summarize some of the
data based on a series of ongoing experiments reported
in [28]. Specifically, the data points represent summaries
of BDD variable ordering experiments with isomorphism
classes of five well-defined functions, with input variables
ranging from 7 to 63. While each of the points in Fig. 8
corresponds to the minimum reported value of BDD node
size, it is most instructive to observe also the respective
min-max BDD range for each of the experiments with the
isomorphism class of 32 function instances under different
initial variable orderings.

The functions referenced in Fig. 8 are described be-
low. The functions chosen for this experiment all have
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Fig. 8. Asymptotic views of some Boolean functions
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identical entropy values of 1.07. Here ‘randomOrders’
represents a randomized arrangement of variable orders,
and ‘bestOrders’ represents best orders achievable by
a heuristic when starting from a randomized arrange-
ment. Ideally, min-max BDD range for ‘bestOrders’
should be 0, when we evaluate an isomorphism class.
The fact that it is not, reflects the limitations of current
heuristics, even for functions with only seven variables.

Function warp7: This function, implemented as a chain
of 3-input multiplexors, represents a 7-input multi-
plexor. The min-max BDD ranges for the isomorph-
ism class of this function are:

min max
randomOrders 11 31

bestOrders 11 15

Function parity7: This function, implemented as a cas-
cade of 2-input XOR gates, represents a 7-input parity
function. The min-max BDD ranges for the isomorph-
ism class of this function are:

min max
randomOrders 14 14

bestOrders 14 14

Function ex_carry7: This function, implemented as a cas-
cade of a 6-input carry circuit and a 2-input XOR
function, represents a 7-input user-defined function.
The min-max BDD ranges for the isomorphism class
of this function are:

min max
randomOrders 17 30

bestOrders 16 18

Function majority7: This 7-input function is most ex-
pediently implemented directly as a truth table (all
entries where number of ‘1’s in the truth table is the
majority are defined to be ‘1’). The gate-level synthe-
sis of this function is very time consuming as the num-
ber of variables increases. The min-max BDD ranges
for the isomorphism class of this function are:

min max
randomOrders 23 23

bestOrders 23 23

Function random_pn7: This 7-input function imple-
ments a random function as a truth table with very
well-defined randomness properties [28] and is based
on the maximal-length pn-sequence (pseudo-noise se-
quence) [29]. The min-max BDD ranges for the iso-
morphism class of this function are:

min max
randomOrders 41 44

bestOrders 41 42

Furthermore, as shown in [28], a random function
based on any pn-sequence will have a significant over-
lap with this range.

7 See Appendix A for additional information.

We conclude with a summary of most important observa-
tions we can make at this point in time about the proper-
ties of the functions shown in Fig. 8.

– Functions such as parity and majority are symmetric
functions: no amount of variable order optimization
will reduce the size of the underlying BDD; any ran-
dom order is the best order, regardless of the number
of variables. There is considerable literature on the
properties of symmetric functions (e.g., [30]) and their
detection as used in BDD software [31].

– In the entropy-invariant class, BDDs of functions that
are most sensitive to variable order tend to optimize to
smallest BDDs (see, for example, the warp function).
On the other hand, BDDs of functions that are least
sensitive to variable order tend to optimize to largest
BDDs (see, for example, the random function).

Future work with single output functions should aim to
fill in the gaps shown in Fig. 8, consider function classes
with entropy< 1.0, and further expand on analysis.

5 Summary and conclusions

The experiments we have presented here are representa-
tive of the problems encountered in the domain of BDD
variable ordering, but are by no means complete. For in-
stance:

– We have exclusively measured and presented results
for a single cost function, to illustrate the principles
of DoE for BDD studies. A comprehensive character-
ization of the heuristics would include other cost func-
tions, such as run time and peak BDD size.

– We used the VIS package as a convenient framework in
which to study a variety of heuristics, but the methods
are equally applicable to any software. VIS has many
choices of static and dynamic ordering heuristics;
here, we have evaluated only the default static order-
ing and the sift reordering heuristic.

– We have used only small example circuits here, al-
though the principles apply equally well to larger
functions. However, much can be learned by studying
small circuits with known properties, as was demon-
strated by our discovery of the problem with static
ordering in VIS 1.1.

– The isomorphism classes used here consisted of 128
instances. (128 was chosen in anticipation of future
studies of the effects of class size.) However, depending
on the required confidence level for statistical tests,
smaller classes are usually sufficient. Sampling theory
provides precise methods for determining the proper
class size for any experiment, but as a practical mat-
ter, the t-test is nearly equivalent to the z-test for more
than 30 samples, so we recommend a class size of 32 for
most future experiments.

– We have restricted the discussion here to isomorph-
ism and entropy-signature invariant circuit equiva-
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lence classes. However, many other classes are pos-
sible, and may have application for evaluating other
heuristics. For instance, in [14] it was shown that
wiring-signature invariant classes are most useful for
physical design heuristics.

– We have dealt here exclusively with combinatorial
functions. The considerations for BDD ordering in se-
quential circuit applications are different, and will re-
quire appropriate treatments, equivalence classes, cost
functions, and experimental designs which will differ
from those presented here.

In most fields of experimental science, careful experi-
mental design is the norm. In software engineering and
the closely related field of CAD, however, ad hoc methods
of performance evaluation persist and are rarely chal-
lenged [32]. In this article, we have presented an overview
of how the principles of experimental design, as practiced
in agriculture, medicine, and many other fields, can be
successfully applied to the evaluation of CAD algorithms,
and in particular, to the evaluation of BDD variable or-
dering heuristics. These principles are generally applica-
ble over a wide range of CAD tasks, but the particulars
of the experiments will vary, depending on the problem
domain.

We have briefly demonstrated experimental designs
for BDD variable ordering heuristics, as follows:

– Performance of static ordering heuristics.
– Performance of dynamic reordering heuristics.
– Comparison of performance of two different BDD
packages.

– Comparison of performance of two releases of the
same BDD package.

– Asymptotic performance of ordering heuristics.
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Appendix A: Entropy and function classification

Entropy has been defined by Shannon [33] as a measure
of “information, choice, and uncertainty” in the context
of communication systems. This quantity plays a central
role in his subsequent work on the information content of
binary-encoded messages.

A definition of computational work based on entropy
has been proposed by Hellerman [34] and independently
by Cook, and Flynn [35]. Cheng and Agrawal generalized
the entropy formulation to multi-output functions [36].
They investigated the relationship between entropy and
the average amount of logic to implement a combinational
network through a series of experiments. These experi-
ments confirm the results anticipated by Shannon [37],
namely, that on the average, the amount of logic effec-
tively doubles as one increases the number of input vari-
ables by 1.

For single output functions, the maximum value of
entropy (1.0) expresses the perfect balance of function
values that evaluate to 0 and function values that evalu-
ate to 1. The class of functions with entropy of 1.0 plays
a significant role in cryptography, and a number of im-
portant functions used in hardware design are in this
class. The experiments in [36] confirm not only that the
average amount of logic is maximum for the maximum
entropy value of 1.0, but also that the variance of logic
function implementations appears maximal. A compari-
son of three well-known functions, each with entropy of
1.0, illustrates this quickly: a degenerate n-input func-
tion such as xi requires no more than a single logic in-
verter; an n-input parity function requires exactly n 2-
input logic nodes; an n-input majority function requires
at least O(n2) 2-input logic nodes. In the average case,
O(2n) 2-input logic nodes may be required.

When we classify the set of all 22
n
Boolean functions

by entropy, functions having the entropy of 1.0 form the
largest class. Sampling the class of all functions having
the entropy of 1.0 will most likely produce a class of func-
tions that are too diverse to form a single class for use
in the experimental design for testing the performance
of algorithms. Hence, a number of additional invariants
must characterize the function before we can assemble
a class of sufficiently related functions for use in experi-
mental design. New experimental research in this direc-
tion, complementing the theoretical work in [38–41], is in
progress [28].

Appendix B: Statistical tests of significance

In the context of this paper, the basic statistical decision
we want to make involves comparison of two treatments.
The objective of each treatment is to reduce the size of
the binary decision diagram (BDD), given an equivalence
class of Boolean functions. Treatment 1 represents a vari-
able ordering heuristic 1 inducing a population mean µ1,
and treatment 2 represents a variable ordering heuristic
2 inducing a population mean µ2. On the basis of sample
data, we have to decide between two hypotheses:

H0: µ1 = µ1, and any difference is due to chance.
H1: µ1 < µ2, and the difference is due to treatment.

We replicate some of the data from Table 5 to illustrate
the decision process:

Calculation of t-statistic
(sample size N1 =N2 =N = 128)

Sample
Mean Std Dev
(x1, x2) (s1, s2)

Treatment 1 637.4 65.7
Treatment 2 659.0 65.2
t-statistic -2.63
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In our experiments, the number of samples for a given
class is held constant, i.e., N1 =N2 =N , hence the for-
mula to calculate the t-statistic is particularly
simple [20, 21]:

t=
x1−x2√

((s21+ s
2
2)/(N −1))

Since we are testing the hypothesis that one treatment is
better than another, we define the critical t-value in the
context of one-sided test or one-tailed test. In such cases,
the critical region is a region to one side of t-distribution,

8 Testing the hypothesis that one treatment is better than an-
other is different from testing whether one treatment is better or
worse than the other. Testing the latter hypothesis requries a two-
sided test or two-tailed test.

with area under the distribution equal to the level of sig-
nificance αf8

A typical level of significance in hypothesis testing is
α = 0.05, implying a critical value of tα,2(N−1). For ex-
ample, we find t0.05,254 = 1.969 for two sample sets, each
of size 128, or t0.05,62 = 1.999 for two sample sets, each of
size of 32. At this level of significance, we accept the hy-
pothesisH0 only if t-statistic based on 254 degrees of free-
dom evaluates to |t| < t0.05,254. Our level of confidence,
or the probability that the acceptance of H0 is actually
correct, is 95%.

In the table above, while the sample means evaluate to
x1 < x2, we cannot accept this result as a certainty. How-
ever, since we evaluated |t| = 2.63> t0.05,254 = 1.969, we
now reject the hypothesis H0 that the respective means
are the same, and accept that the hypothesisH1 (x1 <x2)
is true – with the probability of 95%.


