
Parallel Programming Languages & Systems

Exercise Sheet 2

This exercise sheet accounts for 10% of the course final mark. The deadline for
electronic submission is 4pm on Thursday, 21st March 2019. You must use
filenames as indicated in the exercise. Your program must compile and execute cor-
rectly on DICE, using the commands described here. It is your responsibility to
check this.

Good Scholarly Practice: Please remember the University requirement as regards
all assessed work for credit. Details about this can be found at:

http: // web. inf. ed. ac. uk/ infweb/ admin/ policies/ academic-misconduct

Furthermore, you are required to take reasonable measures to protect your assessed
wo rk from unauthorised access. For example, if you put any such work on a public
reposi tory then you must set access permissions appropriately (generally permitting
access only to yourself, or your group in the case of group practicals).

You will write a C program, parallelized with Pthreads, which implements a parallel algorithm
for the prefix sum problem. Good marks will be awarded for following the specification,
for appropriate use of Pthreads operations and for general clarity of code, presentation (for
example appropriate commenting) and discussion. You will be running your program on a
normal DICE workstation. Depending upon the specification of the workstation you run on,
you may not see any real performance improvement (for example, if it only has one core!).
This doesn’t matter – the goal here is to correctly implement the given algorithm.

Parallel Prefix Sum

Given a sequence of integers, its prefix sum is a sequence of the same length in which the ith

value is the sum of the first i values of the original sequence. For example, the prefix sum of
the sequence 2, 3, 0, 2, 4, 8 is 2, 5, 5, 7, 11, 19. Computing a prefix sum sequentially is trivial:
we simply loop over the sequence, adding items and storing partial results as we go along.

However, it is also possible to compute a prefix sum in parallel, using shared memory
and threads. Given an n item sequence stored in an array, and p threads, each thread takes
responsibility for a roughly equal-sized chunk of the sequence. The algorithm has three phases.
In the first and third phases only the responsible thread for a chunk will write new values to
its chunk. In the second phase only thread 0 is active, and makes updates at various places
in the whole array. All updates are made in place (i.e. there no auxiliary arrays or copies
made). The phases of the algorithm are as follows.

1. Every thread performs a prefix sum sequentially across its chunk of data, in place.

2. Thread 0 performs a sequential prefix sum using just the highest indexed position from
each chunk, in place. Other threads simply wait.

1

http://web.inf.ed.ac.uk/infweb/admin/policies/academic-misconduct

3. Every thread (except thread 0) adds the final value from the preceding chunk into every
value in its own chunk, except the last position (which already has its correct value after
phase 2), in place.

The figure below illustrates the contents of the array as they are changed by each phase, for
an example with an array of length 17 and 4 threads. The dashed lines indicate the boundaries
between chunks (threads 0, 1 and 2 have chunks of size 4, while thread 3 has a chunk of size 5).
The ovals indicate the positions which have been updated during the previous phase. There
is another example at the end of this document.

local chunk prefix (phase 1)

0 1 2 2 2 3 3 4 0 1 2 4 0 3 4 4 5

prefix top elements (phase 2)

update local chunks (phase 3)

0 1 1 0 2 1 0 1 0 1 1 2 0 3 1 0 1

0 1 2 2 2 3 3 6 0 1 2 10 0 3 4 4 15

0 1 2 2 4 5 5 6 6 7 8 10 10 13 14 14 15

chunk/thread 0 chunk/thread 1 chunk/thread 2 chunk/thread 3

The Exercise

You must

1. Implement a C with Pthreads version of the prefix sum algorithm described above.

2. Write a brief explanation of what you have done.

In order to avoid wasting time with I/O in C, and in order to make the marking task a little
easier, you are provided with a template program which you should expand. This can be
copied from the course web page, where it is called ex2Starter.c. You should call your
copy of the file ex2.c. The file as provided contains a program which creates some random
data and computes its prefix sum sequentially. It then calls the parallel prefix sum function
on a copy of the same random data. Finally, it checks whether the two results agree. Since

2

the parallel prefix sum function is currently empty, the results don’t agree and the program
reports an error. You can compile and test the program as follows, on DICE (the data will
be generated randomly for each run)

[mymachine]mic: gcc -o ex2 ex2.c -DNITEMS=10 -DNTHREADS=4 -DSHOWDATA=1 -lpthread

[mymachine]mic: ./ex2

initial data : 1 3 4 2 4 4 1 4 4 2

sequential prefix sum : 1 4 8 10 14 18 19 23 27 29

parallel prefix sum : 1 3 4 2 4 4 1 4 4 2

Error: The sequential and parallel prefix sum arrays don’t match.

As you can see, three values are defined in the compilation command: NITEMS is the size of
arrays to create, NTHREADS is the number of threads to create, and SHOWDATA controls whether
or not the arrays are displayed (value 1) or not (value 0). You might want to switch off display
when testing with large arrays.

Writing the Program

Your task is to implement the function called parallelprefixsum. You can add other func-
tions and definitions as you choose, but do not change any of the other code provided.
Your parallelprefixsum function (and/or any helper functions you write)

• should create and run NTHREADS threads, which implement the algorithm described above

• should work for any value of NITEMS such that NITEMS >= NTHREADS

• should use chunks which are roughly equal in size, in the sense that each thread should
have a chunk of size at least

⌊
NITEMS

NTHREADS

⌋
(i.e. the floor function of NITEMS divided by

NTHREADS). Surplus items can be handled as you choose - an obvious scheme, as in the
examples in this document, is to assign them to the final chunk. For example, with 3
threads and 11 items, the first two chunks would have 3 items and the last chunk would
have 5 (i.e.

⌊
11
3

+ 2)
⌋
). With 3 threads and 101 items, the first two chunks could have

33 items and the last chunk could have 35 (i.e.
⌊
101
3

+ 2)
⌋
).

Multiple Argument Threads

As we have seen in lectures, one of the challenging features of Pthreads is that a thread can
only be passed a single argument when it is created. You may find that you want to pass your
threads more than one argument. The file multiArgumentThreads.c shows how this effect
can be achieved, by creating a packet of arguments, passed to the thread via a pointer.

Writing the Discussion

Having completed the program, you should write a short description (of around half a page)
explaining your implementation strategy. You should explain how you created threads, how,
where and why you synchronized them, and any other interesting features of your implemen-
tation. This discussion should be written as a multi-line comment in your source file.

3

Submitting your Work

Submit your work with the command

submit ppls cw2 ex2.c

Testing your Code

Your code will be tested on a regular DICE machine, by compiling and running it for a range
of values of NITEMS and NTHREADS. Notice that the code as provided for you will exit the
program if run with values which are too large - your code won’t be tested with values outside
these bounds.

Another Example

Here is another example of the algorithm in action, this time for 3 threads and an array of
length 10. Each thread takes responsibility for a chunk of size 3, except thread 2 which has a
chunk of size 4.

local chunk prefix (phase 1)

2 3 3 1 4 5 2 6 6 7

prefix top elements (phase 2)

update local chunks (phase 3)

2 1 0 1 3 1 2 4 0 1

2 3 3 1 4 8 2 6 6 15

2 3 3 4 7 8 10 14 14 15

chunk/thread 0 chunk/thread 1 chunk/thread 2

4

