
A User's Guide to MPIPeter S. PachecoDepartment of MathematicsUniversity of San FranciscoSan Francisco, CA 94117peter@usfca.eduMarch 30, 1998Contents1 Introduction 32 Greetings! 42.1 General MPI Programs . 62.2 Finding Out About the Rest of the World 72.3 Message: Data + Envelope . 72.4 MPI Send and MPI Receive 83 Collective Communication 113.1 Tree-Structured Communication 113.2 Broadcast . 133.3 Reduce . 143.4 Other Collective Communication Functions 164 Grouping Data for Communication 184.1 The Count Parameter . 184.2 Derived Types and MPI Type struct 194.3 Other Derived Datatype Constructors 234.4 Pack/Unpack . 244.5 Deciding Which Method to Use 261

5 Communicators and Topologies 295.1 Fox's Algorithm . 295.2 Communicators . 305.3 Working with Groups, Contexts, and Communicators 325.4 MPI Comm split . 355.5 Topologies . 365.6 MPI Cart sub . 395.7 Implementation of Fox's Algorithm 406 Where To Go From Here 446.1 What We Haven't Discussed 446.2 Implementations of MPI . 456.3 More Information on MPI . 456.4 The Future of MPI . 46A Compiling and Running MPI Programs 47A.1 MPICH . 47A.2 CHIMP . 47A.3 LAM . 49

2

1 IntroductionThe Message-Passing Interface or MPI is a library of functions and macrosthat can be used in C, FORTRAN, and C++ programs. As its name implies,MPI is intended for use in programs that exploit the existence of multipleprocessors by message-passing.MPI was developed in 1993{1994 by a group of researchers from industry,government, and academia. As such, it is one of the �rst standards forprogramming parallel processors, and it is the �rst that is based on message-passing.This User's Guide is a brief tutorial introduction to some of the moreimportant features of MPI for C programmers. It is intended for use byprogrammers who have some experience using C but little experience withmessage-passing. It is based on parts of the book [6], which is to be publishedby Morgan Kaufmann. For comprehensive guides to MPI see [4], [5] and [2].For an extended, elementary introduction, see [6].Acknowledgments. My thanks to nCUBE and the USF faculty devel-opment fund for their support of the work that went into the preparationof this Guide. Work on MPI was supported in part by the Advanced Re-search Projects Agency under contract number NSF-ASC-9310330, adminis-tered by the National Science Foundation's Division of Advanced Scienti�cComputing. The author gratefully acknowledges use of the Argonne High-Performance Computing Research Facility. The HPCRF is funded principallyby the U.S. Department of Energy O�ce of Scienti�c Computing.Copying. This Guide may be freely copied and redistributed providedsuch copying and redistribution is not done for pro�t.

3

2 Greetings!The �rst C program that most of us saw was the \Hello, world!" program inKernighan and Ritchie's classic text, The C Programming Language [3]. Itsimply prints the message \Hello, world!" A variant that makes some use ofmultiple processes is to have each process send a greeting to another process.In MPI, the processes involved in the execution of a parallel program areidenti�ed by a sequence of non-negative integers. If there are p processesexecuting a program, they will have ranks 0, 1, . . . , p � 1. The followingprogram has each process other than 0 send a message to process 0, andprocess 0 prints out the messages it received.#include <stdio.h>#include "mpi.h"main(int argc, char** argv) {int my_rank; /* Rank of process */int p; /* Number of processes */int source; /* Rank of sender */int dest; /* Rank of receiver */int tag = 50; /* Tag for messages */char message[100]; /* Storage for the message */MPI_Status status; /* Return status for receive */MPI_Init(&argc, &argv);MPI_Comm_rank(MPI_COMM_WORLD, &my_rank);MPI_Comm_size(MPI_COMM_WORLD, &p);if (my_rank != 0) {sprintf(message, "Greetings from process %d!",my_rank);dest = 0;/* Use strlen(message)+1 to include '\0' */MPI_Send(message, strlen(message)+1, MPI_CHAR, dest,tag, MPI_COMM_WORLD);} else { /* my_rank == 0 */for (source = 1; source < p; source++) {4

MPI_Recv(message, 100, MPI_CHAR, source, tag,MPI_COMM_WORLD, &status);printf("%s\n", message);}}MPI_Finalize();} /* main */The details of compiling and executing this program depend on the sys-tem you're using. So ask your local guide how to compile and run a parallelprogram that uses MPI. We discuss the freely available systems in an ap-pendix.When the program is compiled and run with two processes, the outputshould beGreetings from process 1!If it's run with four processes, the output should beGreetings from process 1!Greetings from process 2!Greetings from process 3!Although the details of what happens when the program is executed varyfrom machine to machine, the essentials are the same on all machines, pro-vided we run one process on each processor.1. The user issues a directive to the operating system which has the e�ectof placing a copy of the executable program on each processor.2. Each processor begins execution of its copy of the executable.3. Di�erent processes can execute di�erent statements by branching withinthe program. Typically the branching will be based on process ranks.So the Greetings program uses the Single Program Multiple Data or SPMDparadigm. That is, we obtain the e�ect of di�erent programs running ondi�erent processors by taking branches within a single program on the basisof process rank: the statements executed by process 0 are di�erent from those5

executed by the other processes, even though all processes are running thesame program. This is the most commonly used method for writing MIMDprograms, and we'll use it exclusively in this Guide.2.1 General MPI ProgramsEvery MPI program must contain the preprocessor directive#include "mpi.h"This �le, mpi.h, contains the de�nitions, macros and function prototypesnecessary for compiling an MPI program.Before any other MPI functions can be called, the function MPI Init mustbe called, and it should only be called once. Its arguments are pointers tothe main function's parameters | argc and argv. It allows systems to do anyspecial set-up so that the MPI library can be used. After a program has�nished using the MPI library, it must call MPI Finalize. This cleans up any\un�nished business" left by MPI | e.g., pending receives that were nevercompleted. So a typical MPI program has the following layout....#include "mpi.h"...main(int argc, char** argv) {.../* No MPI functions called before this */MPI_Init(&argc, &argv);...MPI_Finalize();/* No MPI functions called after this */...} /* main */...
6

2.2 Finding Out About the Rest of the WorldMPI provides the function MPI Comm rank, which returns the rank of aprocess in its second argument. Its syntax isint MPI_Comm_rank(MPI_Comm comm, int rank)The �rst argument is a communicator. Essentially a communicator is a collec-tion of processes that can send messages to each other. For basic programs,the only communicator needed is MPI COMM WORLD. It is prede�ned inMPI and consists of all the processes running when program execution be-gins.Many of the constructs in our programs also depend on the number of pro-cesses executing the program. So MPI provides the function MPI Comm sizefor determining this. Its �rst argument is a communicator. It returns thenumber of processes in a communicator in its second argument. Its syntax isint MPI_Comm_size(MPI_Comm comm, int size)2.3 Message: Data + EnvelopeThe actual message-passing in our program is carried out by the MPI func-tions MPI Send and MPI Recv. The �rst command sends a message to a des-ignated process. The second receives a message from a process. These arethe most basic message-passing commands in MPI. In order for the messageto be successfully communicated the system must append some informationto the data that the application program wishes to transmit. This addi-tional information forms the envelope of the message. In MPI it contains thefollowing information.1. The rank of the receiver.2. The rank of the sender.3. A tag.4. A communicator.These items can be used by the receiver to distinguish among incoming mes-sages. The source argument can be used to distinguish messages received7

from di�erent processes. The tag is a user-speci�ed int that can be used todistinguish messages received from a single process. For example, supposeprocess A is sending two messages to process B; both messages contain asingle oat. One of the oats is to be used in a calculation, while the otheris to be printed. In order to determine which is which, A can use di�erenttags for the two messages. If B uses the same two tags in the correspond-ing receives, when it receives the messages, it will \know" what to do withthem. MPI guarantees that the integers 0{32767 can be used as tags. Mostimplementations allow much larger values.As we noted above, a communicator is basically a collection of processesthat can send messages to each other. When two processes are communi-cating using MPI Send and MPI Receive, its importance arises when separatemodules of a program have been written independently of each other. Forexample, suppose we wish to solve a system of di�erential equations, and, inthe course of solving the system, we need to solve a system of linear equa-tions. Rather than writing the linear system solver from scratch, we mightwant to use a library of functions for solving linear systems that was writtenby someone else and that has been highly optimized for the system we'reusing. How do we avoid confusing the messages we send from process A toprocess B with those sent by the library functions? Before the advent ofcommunicators, we would probably have to partition the set of valid tags,setting aside some of them for exclusive use by the library functions. This istedious and it will cause problems if we try to run our program on anothersystem: the other system's linear solver may not (probably won't) requirethe same set of tags. With the advent of communicators, we simply createa communicator that can be used exclusively by the linear solver, and passit as an argument in calls to the solver. We'll discuss the details of thislater. For now, we can get away with using the prede�ned communicatorMPI COMM WORLD. It consists of all the processes running the programwhen execution begins.2.4 MPI Send and MPI ReceiveTo summarize, let's detail the syntax of MPI Send and MPI Receive.int MPI_Send(void* message, int count,MPI_Datatype datatype, int dest, int tag,8

MPI_Comm comm)int MPI_Recv(void* message, int count,MPI_Datatype datatype, int source, int tag,MPI_Comm comm, MPI_Status* status)Like most functions in the standard C library most MPI functions return aninteger error code. However, like most C programmers, we will ignore thesereturn values in most cases.The contents of the message are stored in a block of memory referenced bythe argument message. The next two arguments, count and datatype, allowthe system to identify the end of the message: it contains a sequence of countvalues, each having MPI type datatype. This type is not a C type, althoughmost of the prede�ned types correspond to C types. The prede�ned MPItypes and the corresponding C types (if they exist) are listed in the followingtable. MPI datatype C datatypeMPI CHAR signed charMPI SHORT signed short intMPI INT signed intMPI LONG signed long intMPI UNSIGNED CHAR unsigned charMPI UNSIGNED SHORT unsigned short intMPI UNSIGNED unsigned intMPI UNSIGNED LONG unsigned long intMPI FLOAT oatMPI DOUBLE doubleMPI LONG DOUBLE long doubleMPI BYTEMPI PACKEDThe last two types, MPI BYTE and MPI PACKED, don't correspond to stan-dard C types. The MPI BYTE type can be used if you wish to force thesystem to perform no conversion between di�erent data representations (e.g.,on a heterogeneous network of workstations using di�erent representationsof data). We'll discuss the type MPI PACKED later.Note that the amount of space allocated for the receiving bu�er does nothave to match the exact amount of space in the message being received. For9

example, when our program is run, the size of the message that process 1sends, strlen(message)+1, is 28 chars, but process 0 receives the message ina bu�er that has storage for 100 characters. This makes sense. In general,the receiving process may not know the exact size of the message being sent.So MPI allows a message to be received as long as there is su�cient storageallocated. If there isn't su�cient storage, an overow error occurs [4].The arguments dest and source are, respectively, the ranks of the receivingand the sending processes. MPI allows source to be a \wildcard." There isa prede�ned constant MPI ANY SOURCE that can be used if a process isready to receive a message from any sending process rather than a particularsending process. There is not a wildcard for dest.As we noted earlier, MPI has two mechanisms speci�cally designed for\partitioning the message space:" tags and communicators. The argumentstag and comm are, respectively, the tag and communicator. The tag is anint, and, for now, our only communicator is MPI COMM WORLD, which,as we noted earlier is prede�ned on all MPI systems and consists of all theprocesses running when execution of the program begins. There is a wildcard,MPI ANY TAG, that MPI Recv can use for the tag. There is no wildcard forthe communicator. In other words, in order for process A to send a messageto process B; the argument comm that A uses in MPI Send must be identicalto the argument that B uses in MPI Recv.The last argument of MPI Recv, status, returns information on the datathat was actually received. It references a record with with two �elds | onefor the source and one for the tag. So if, for example, the source of the receivewas MPI ANY SOURCE, then status will contain the rank of the process thatsent the message.

10

3 Collective CommunicationThere are probably a few things in the trapezoid rule program that we canimprove on. For example, there is the I/O issue. There are also a coupleof problems we haven't discussed yet. Let's look at what happens when theprogram is run with eight processes.All the processes begin executing the program (more or less) simultane-ously. However, after carrying out the basic set-up tasks (calls to MPI Init,MPI Comm size, and MPI Comm rank), processes 1{7 are idle while process0 collects the input data. We don't want to have idle processes, but in viewof our restrictions on which processes can read input, there isn't much wecan do about this. However, after process 0 has collected the input data, thehigher rank processes must continue to wait while 0 sends the input data tothe lower rank processes. This isn't just an I/O issue. Notice that there isa similar ine�ciency at the end of the program, when process 0 does all thework of collecting and adding the local integrals.Of course, this is highly undesirable: the main point of parallel processingis to get multiple processes to collaborate on solving a problem. If one ofthe processes is doing most of the work, we might as well use a conventional,single-processor machine.3.1 Tree-Structured CommunicationLet's try to improve our code. We'll begin by focussing on the distributionof the input data. How can we divide the work more evenly among theprocesses? A natural solution is to imagine that we have a tree of processes,with 0 at the root.During the �rst stage of the data distribution, 0 sends the data to (say)4. During the next stage, 0 sends the data to 2, while 4 sends it to 6. Duringthe last stage, 0 sends to 1, while 2 sends to 3, 4 sends to 5, and 6 sends to7. (See �gure 3.1.) So we have reduced our input distribution loop from7 stages to 3 stages. More generally, if we have p processes, this procedureallows us to distribute the input data in dlog2(p)e� stages, rather than p� 1stages, which, if p is large, is a huge savings.In order to modify the Get data function to use a tree-structured distri-�The notation dxe denotes the smallest whole number greater than or equal to x.11

Figure 1: Processors con�gured as a treebution scheme, we need to introduce a loop with dlog2(p)e stages. In orderto implement the loop, each process needs to calculate at each stage� whether it receives, and, if so, the source; and� whether it sends, and, if so, the destination.As you can probably guess, these calculations can be a bit complicated,especially since there is no canonical choice of ordering. In our example, wechose:1. 0 sends to 4.2. 0 sends to 2, 4 sends to 6.3. 0 sends to 1, 2 sends to 3, 4 sends to 5, 6 sends to 7.We might also have chosen (for example):1. 0 sends to 1.2. 0 sends to 2, 1 sends to 3.3. 0 sends to 4, 1 sends to 5, 2 sends to 6, 3 sends to 7.
12

Indeed, unless we know something about the underlying topology of ourmachine, we can't really decide which scheme is better.So ideally we would prefer to use a function that has been speci�callytailored to the machine we're using so that we won't have to worry about allthese tedious details, and we won't have to modify our code every time wechange machines. As you may have guessed, MPI provides such a function.3.2 BroadcastA communication pattern that involves all the processes in a communicatoris a collective communication. As a consequence, a collective communicationusually involves more than two processes. A broadcast is a collective commu-nication in which a single process sends the same data to every process. InMPI the function for broadcasting data is MPI Bcast:int MPI_Bcast(void* message, int count,MPI_Datatype datatype, int root, MPI_Comm comm)It simply sends a copy of the data in message on process root to each processin the communicator comm. It should be called by all the processes in thecommunicator with the same arguments for root and comm. Hence a broad-cast message cannot be received with MPI Recv. The parameters count anddatatype have the same function that they have in MPI Send and MPI Recv:they specify the extent of the message. However, unlike the point-to-pointfunctions, MPI insists that in collective communication count and datatypebe the same on all the processes in the communicator [4]. The reason for thisis that in some collective operations (see below), a single process will receivedata from many other processes, and in order for a program to determinehow much data has been received, it would need an entire array of returnstatuses.We can rewrite the Get data function using MPI Bcast as follows.void Get_data2(int my_rank, float* a_ptr, float* b_ptr,int* n_ptr) {int root = 0; /* Arguments to MPI_Bcast */int count = 1;if (my_rank == 0) 13

{ printf("Enter a, b, and n\n");scanf("%f %f %d", a_ptr, b_ptr, n_ptr);}MPI_Bcast(a_ptr, 1, MPI_FLOAT, root,MPI_COMM_WORLD);MPI_Bcast(b_ptr, 1, MPI_FLOAT, root,MPI_COMM_WORLD);MPI_Bcast(n_ptr, 1, MPI_INT, root,MPI_COMM_WORLD);} /* Get_data2 */Certainly this version of Get data is much more compact and readily com-prehensible than the original, and if MPI Bcast has been optimized for yoursystem, it will also be a good deal faster.3.3 ReduceIn the trapezoid rule program after the input phase, every processor executesessentially the same commands until the �nal summation phase. So unlessour function f(x) is fairly complicated (i.e., it requires considerably morework to evaluate over certain parts of [a; b]), this part of the program dis-tributes the work equally among the processors. As we have already noted,this is not the case with the �nal summation phase, when, once again, process0 gets a disproportionate amount of the work. However, you have probablyalready noticed that by reversing the arrows in �gure 3.1, we can use thesame idea we used in section 3.1. That is, we can distribute the work ofcalculating the sum among the processors as follows.1. (a) 1 sends to 0, 3 sends to 2, 5 sends to 4, 7 sends to 6.(b) 0 adds its integral to that of 1, 2 adds its integral to that of 3, etc.2. (a) 2 sends to 0, 6 sends to 4.(b) 0 adds, 4 adds.3. (a) 4 sends to 0.(b) 0 adds. 14

Of course, we run into the same question that occurred when we were writingour own broadcast: is this tree structure making optimal use of the topologyof our machine? Once again, we have to answer that this depends on themachine. So, as before, we should let MPI do the work, by using an optimizedfunction.The \global sum" that we wish to calculate is an example of a generalclass of collective communication operations called reduction operations. In aglobal reduction operation, all the processes (in a communicator) contributedata which is combined using a binary operation. Typical binary operationsare addition, max, min, logical and, etc. The MPI function for performing areduction operation isint MPI_Reduce(void* operand, void* result,int count, MPI_Datatype datatype, MPI_Op op,int root, MPI_Comm comm)MPI Reduce combines the operands stored in *operand using operation opand stores the result in *result on process root. Both operand and result referto count memory locations with type datatype. MPI Reduce must be called byall processes in the communicator comm, and count, datatype, and op mustbe the same on each process.The argument op can take on one of the following prede�ned values.Operation Name MeaningMPI MAX MaximumMPI MIN MinimumMPI SUM SumMPI PROD ProductMPI LAND Logical AndMPI BAND Bitwise AndMPI LOR Logical OrMPI BOR Bitwise OrMPI LXOR Logical Exclusive OrMPI BXOR Bitwise Exclusive OrMPI MAXLOC Maximum and Location of MaximumMPI MINLOC Minimum and Location of MinimumIt is also possible to de�ne additional operations. For details see [4].15

As an example, let's rewrite the last few lines of the trapezoid rule pro-gram. .../* Add up the integrals calculated by each process */MPI_Reduce(&integral, &total, 1, MPI_FLOAT,MPI_SUM, 0, MPI_COMM_WORLD);/* Print the result */...Note that each processor calls MPI Reduce with the same arguments. Inparticular, even though total only has signi�cance on process 0, each processmust supply an argument.3.4 Other Collective Communication FunctionsMPI supplies many other collective communication functions. We brieyenumerate some of these here. For full details, see [4].� int MPI_Barrier(MPI_Comm comm)MPI Barrier provides a mechanism for synchronizing all the processes inthe communicator comm. Each process blocks (i.e., pauses) until everyprocess in comm has called MPI Barrier.� int MPI_Gather(void* send_buf, int send_count,MPI_Datatype send_type, void* recv_buf,int recv_count, MPI_Datatype recv_type,int root, MPI_comm comm)Each process in comm sends the contents of send buf to the process withrank root. The process root concatenates the received data in processrank order in recv buf. That is, the data from process 0 is followed bythe data from process 1, which is followed by the data from process 2,etc. The recv arguments are signi�cant only on the process with rankroot. The argument recv count indicates the number of items receivedfrom each process | not the total number received.16

� int MPI_Scatter(void* send_buf, int send_count,MPI_Datatype send_type, void* recv_buf,int recv_count, , MPI_Datatype recv_type,int root, MPI_Comm comm)The process with rank root distributes the contents of send buf amongthe processes. The contents of send buf are split into p segments eachconsisting of send count items. The �rst segment goes to process 0, thesecond to process 1, etc. The send arguments are signi�cant only onprocess root.� int MPI_Allgather(void* send_buf, int send_count,MPI_Datatype send_type, void* recv_buf,int recv_count, MPI_Datatype recv_type,MPI_comm comm)MPI Allgather gathers the contents of each send buf on each process. Itse�ect is the same as if there were a sequence of p calls to MPI Gather,each of which has a di�erent process acting as root.� int MPI_Allreduce(void* operand, void* result,int count, MPI_Datatype datatype, MPI_Op op,MPI_Comm comm)MPI Allreduce stores the result of the reduce operation op in each pro-cess' result bu�er.

17

4 Grouping Data for CommunicationWith current generation machines sending a message is an expensive op-eration. So as a rule of thumb, the fewer messages sent, the better theoverall performance of the program. However, in each of our trapezoid ruleprograms, when we distributed the input data, we sent a; b; and n in sep-arate messages | whether we used MPI Send and MPI Recv or MPI Bcast.So we should be able to improve the performance of the program by send-ing the three input values in a single message. MPI provides three mech-anisms for grouping individual data items into a single message: the countparameter to the various communication routines, derived datatypes, andMPI Pack/MPI Unpack. We examine each of these options in turn.4.1 The Count ParameterRecall that MPI Send, MPI Receive, MPI Bcast, and MPI Reduce all have acount and a datatype argument. These two parameters allow the user togroup data items having the same basic type into a single message. In orderto use this, the grouped data items must be stored in contiguous memorylocations. Since C guarantees that array elements are stored in contiguousmemory locations, if we wish to send the elements of an array, or a subset ofan array, we can do so in a single message. In fact, we've already done thisin section 2, when we sent an array of char.As another example, suppose we wish to send the second half of a vectorcontaining 100 oats from process 0 to process 1.float vector[100];int tag, count, dest, source;MPI_Status status;int p;int my_rank;...if (my_rank == 0) {/* Initialize vector and send */...tag = 47;count = 50; 18

dest = 1;MPI_Send(vector + 50, count, MPI_FLOAT, dest, tag,MPI_COMM_WORLD);} else { /* my_rank == 1 */tag = 47;count = 50;source = 0;MPI_Recv(vector+50, count, MPI_FLOAT, source, tag,MPI_COMM_WORLD, &status);}Unfortunately, this doesn't help us with the trapezoid rule program. Thedata we wish to distribute to the other processes, a, b, and n, are not storedin an array. So even if we declared them one after the other in our program,float a;float b;int n;C does not guarantee that they are stored in contiguous memory locations.One might be tempted to store n as a oat and put the three values in anarray, but this would be poor programming style and it wouldn't address thefundamental issue. In order to solve the problem we need to use one of MPI'sother facilities for grouping data.4.2 Derived Types and MPI Type structIt might seem that another option would be to store a; b; and n in a structwith three members | two oats and an int | and try to use the datatypeargument to MPI Bcast. The di�culty here is that the type of datatype isMPI Datatype, which is an actual type itself | not the same thing as a user-de�ned type in C. For example, suppose we included the type de�nitiontypedef struct {float a;float b;int n;} INDATA_TYPE 19

and the variable de�nitionINDATA_TYPE indataNow if we call MPI BcastMPI_Bcast(&indata, 1, INDATA_TYPE, 0, MPI_COMM_WORLD)the program will fail. The details depend on the implementation of MPI thatyou're using. If you have an ANSI C compiler, it will ag an error in the callto MPI Bcast, since INDATA TYPE does not have type MPI Datatype. Theproblem here is that MPI is a pre-existing library of functions. That is, theMPI functions were written without knowledge of the datatypes that youde�ne in your program. In particular, none of the MPI functions \knows"about INDATA TYPE.MPI provides a partial solution to this problem, by allowing the user tobuild MPI datatypes at execution time. In order to build an MPI datatype,one essentially speci�es the layout of the data in the type | the membertypes and their relative locations in memory. Such a type is called a deriveddatatype. In order to see how this works, let's write a function that will builda derived type that corresponds to INDATA TYPE.void Build_derived_type(INDATA_TYPE* indata,MPI_Datatype* message_type_ptr){int block_lengths[3];MPI_Aint displacements[3];MPI_Aint addresses[4];MPI_Datatype typelist[3];/* Build a derived datatype consisting of* two floats and an int *//* First specify the types */typelist[0] = MPI_FLOAT;typelist[1] = MPI_FLOAT;typelist[2] = MPI_INT;/* Specify the number of elements of each type */20

block_lengths[0] = block_lengths[1] =block_lengths[2] = 1;/* Calculate the displacements of the members* relative to indata */MPI_Address(indata, &addresses[0]);MPI_Address(&(indata->a), &addresses[1]);MPI_Address(&(indata->b), &addresses[2]);MPI_Address(&(indata->n), &addresses[3]);displacements[0] = addresses[1] - addresses[0];displacements[1] = addresses[2] - addresses[0];displacements[2] = addresses[3] - addresses[0];/* Create the derived type */MPI_Type_struct(3, block_lengths, displacements, typelist,message_type_ptr);/* Commit it so that it can be used */MPI_Type_commit(message_type_ptr);} /* Build_derived_type */The �rst three statements specify the types of the members of the derivedtype, and the next speci�es the number of elements of each type. The nextfour calculate the addresses of the three members of indata. The next threestatements use the calculated addresses to determine the displacements ofthe three members relative to the address of the �rst | which is given dis-placement 0. With this information, we know the types, sizes and relativelocations of the members of a variable having C type INDATA TYPE, andhence we can de�ne a derived data type that corresponds to the C type.This is done by calling the functions MPI Type struct and MPI Type commit.The newly created MPI datatype can be used in any of the MPI com-munication functions. In order to use it, we simply use the starting addressof a variable of type INDATA TYPE as the �rst argument, and the derivedtype in the datatype argument. For example, we could rewrite the Get datafunction as follows.void Get_data3(INDATA_TYPE* indata, int my_rank){MPI_Datatype message_type; /* Arguments to */21

int root = 0; /* MPI_Bcast */int count = 1;if (my_rank == 0){printf("Enter a, b, and n\n");scanf("%f %f %d",&(indata->a), &(indata->b), &(indata->n));}Build_derived_type(indata, &message_type);MPI_Bcast(indata, count, message_type, root,MPI_COMM_WORLD);} /* Get_data3 */A few observations are in order. Note that we calculated the addressesof the members of indata with MPI Address rather than C's & operator. Thereason for this is that ANSI C does not require that a pointer be an int(although this is commonly the case). See [4], for a more detailed discussionof this point. Note also that the type of array of displacements is MPI Aint| not int. This is a special type in MPI. It allows for the possibility thataddresses are too large to be stored in an int.To summarize, then, we can build general derived datatypes by callingMPI Type struct. The syntax isint MPI_Type_Struct(int count,int* array_of_block_lengths,MPI_Aint* array_of_displacements,MPI_Datatype* array_of_types,MPI_Datatype* newtype)The argument count is the number of elements in the derived type. It isalso the size of the three arrays, array of block lengths, array of displacements,and array of types. The array array of block lengths contains the number ofentries in each element of the type. So if an element of the type is an arrayof m values, then the corresponding entry in array of block lengths is m. Thearray array of displacements contains the displacement of each element fromthe beginning of the message, and the array array of types contains the MPI22

datatype of each entry. The argument newtype returns a pointer to the MPIdatatype created by the call to MPI Type struct.Note also that newtype and the entries in array of types all have typeMPI Datatype. So MPI Type struct can be called recursively to build morecomplex derived datatypes.4.3 Other Derived Datatype ConstructorsMPI Type struct is the most general datatype constructor in MPI, and as aconsequence, the user must provide a complete description of each elementof the type. If the data to be transmitted consists of a subset of the en-tries in an array, we shouldn't need to provide such detailed information,since all the elements have the same basic type. MPI provides three deriveddatatype constructors for dealing with this situation: MPI Type Contiguous,MPI Type vector and MPI Type indexed. The �rst constructor builds a de-rived type whose elements are contiguous entries in an array. The secondbuilds a type whose elements are equally spaced entries of an array, and thethird builds a type whose elements are arbitrary entries of an array. Note thatbefore any derived type can be used in communication it must be committedwith a call to MPI Type commit.Details of the syntax of the additional type constructors follow.� int MPI_Type_contiguous(int count, MPI_Datatype oldtype,MPI_Datatype* newtype)MPI Type contiguous creates a derived datatype consisting of count el-ements of type oldtype. The elements belong to contiguous memorylocations.� int MPI_Type_vector(int count, int block_length,int stride, MPI_Datatype element_type,MPI_Datatype* newtype)MPI Type vector creates a derived type consisting of count elements.Each element contains block length entries of type element type. Strideis the number of elements of type element type between successive ele-ments of new type. 23

� int MPI_Type_indexed(int count,int* array_of_block_lengths,int* array_of_displacements,MPI_Datatype element_type,MPI_Datatype* newtype)MPI Type indexed creates a derived type consisting of count elements.The ith element (i = 0; 1; : : : ; count � 1), consists of array of block -lengths[i] entries of type element type, and it is displaced array of -displacements[i] units of type element type from the beginning of new-type.4.4 Pack/UnpackAn alternative approach to grouping data is provided by the MPI functionsMPI Pack and MPI Unpack. MPI Pack allows one to explicitly store noncon-tiguous data in contiguous memory locations, and MPI Unpack can be usedto copy data from a contiguous bu�er into noncontiguous memory locations.In order to see how they are used, let's rewrite Get data one last time.void Get_data4(int my_rank, float* a_ptr, float* b_ptr,int* n_ptr) {int root = 0; /* Argument to MPI_Bcast */char buffer[100]; /* Arguments to MPI_Pack/Unpack */int position; /* and MPI_Bcast*/if (my_rank == 0){printf("Enter a, b, and n\n");scanf("%f %f %d", a_ptr, b_ptr, n_ptr);/* Now pack the data into buffer */position = 0; /* Start at beginning of buffer */MPI_Pack(a_ptr, 1, MPI_FLOAT, buffer, 100,&position, MPI_COMM_WORLD);/* Position has been incremented by *//* sizeof(float) bytes */MPI_Pack(b_ptr, 1, MPI_FLOAT, buffer, 100,24

&position, MPI_COMM_WORLD);MPI_Pack(n_ptr, 1, MPI_INT, buffer, 100,&position, MPI_COMM_WORLD);/* Now broadcast contents of buffer */MPI_Bcast(buffer, 100, MPI_PACKED, root,MPI_COMM_WORLD);} else {MPI_Bcast(buffer, 100, MPI_PACKED, root,MPI_COMM_WORLD);/* Now unpack the contents of buffer */position = 0;MPI_Unpack(buffer, 100, &position, a_ptr, 1,MPI_FLOAT, MPI_COMM_WORLD);/* Once again position has been incremented *//* by sizeof(float) bytes */MPI_Unpack(buffer, 100, &position, b_ptr, 1,MPI_FLOAT, MPI_COMM_WORLD);MPI_Unpack(buffer, 100, &position, n_ptr, 1,MPI_INT, MPI_COMM_WORLD);}} /* Get_data4 */In this version of Get data process 0 uses MPI Pack to copy a to bu�er andthen append b and n. After the broadcast of bu�er, the remaining processesuse MPI Unpack to successively extract a, b, and n from bu�er. Note thatthe datatype for the calls to MPI Bcast is MPI PACKED.The syntax of MPI Pack isint MPI_Pack(void* pack_data, int in_count,MPI_Datatype datatype, void* buffer,int size, int* position_ptr, MPI_Comm comm)The parameter pack data references the data to be bu�ered. It should consistof in count elements, each having type datatype. The parameter position ptris an in/out parameter. On input, the data referenced by pack data is copied25

into memory starting at address bu�er + *position ptr. On return, *posi-tion ptr references the �rst location in bu�er after the data that was copied.The parameter size contains the size in bytes of the memory referenced bybu�er, and comm is the communicator that will be using bu�er.The syntax of MPI Unpack isint MPI_Unpack(void* buffer, int size,int* position_ptr, void* unpack_data, int count,MPI_Datatype datatype, MPI_comm comm)The parameter bu�er references the data to be unpacked. It consists of sizebytes. The parameter position ptr is once again an in/out parameter. WhenMPI Unpack is called, the data starting at address bu�er + *position ptr iscopied into the memory referenced by unpack data. On return, *position ptrreferences the �rst location in bu�er after the data that was just copied.MPI Unpack will copy count elements having type datatype into unpack data.The communicator associated with bu�er is comm.4.5 Deciding Which Method to UseIf the data to be sent is stored in consecutive entries of an array, then oneshould simply use the count and datatype arguments to the communicationfunction(s). This approach involves no additional overhead in the form ofcalls to derived datatype creation functions or calls toMPI Pack/MPI Unpack.If there are a large number of elements that are not in contiguous memorylocations, then building a derived type will probably involve less overheadthan a large number of calls to MPI Pack/MPI Unpack.If the data all have the same type and are stored at regular intervalsin memory (e.g., a column of a matrix), then it will almost certainly bemuch easier and faster to use a derived datatype than it will be to useMPI Pack/MPI Unpack. Furthermore, if the data all have the same type, butare stored in irregularly spaced locations in memory, it will still probably beeasier and more e�cient to create a derived type using MPI Type indexed.Finally, if the data are heterogeneous and one is repeatedly sending thesame collection of data (e.g., row number, column number, matrix entry),then it will be better to use a derived type, since the overhead of creat-ing the derived type is incurred only once, while the overhead of calling26

MPI Pack/MPI Unpack must be incurred every time the data is communi-cated.This leaves the case where one is sending heterogeneous data only once, orvery few times. In this case, it may be a good idea to collect some informationon the cost of derived type creation and packing/unpacking the data. Forexample, on an nCUBE 2 running the MPICH implementation of MPI, ittakes about 12 milliseconds to create the derived type used in Get data3, whileit only takes about 2 milliseconds to pack or unpack the data in Get data4.Of course, the saving isn't as great as it seems because of the asymmetryin the pack/unpack procedure. That is, while process 0 packs the data, theother processes are idle, and the entire function won't complete until boththe pack and unpack are executed. So the cost ratio is probably more like3:1 than 6:1.There are also a couple of situations in which the use of MPI Pack andMPI Unpack is preferred. Note �rst that it may be possible to avoid theuse of system bu�ering with pack, since the data is explicitly stored in auser-de�ned bu�er. The system can exploit this by noting that the messagedatatype isMPI PACKED. Also note that the user can send \variable-length"messages by packing the number of elements at the beginning of the bu�er.For example, suppose we want to send rows of a sparse matrix. If we havestored a row as a pair of arrays | one containing the column subscripts, andone containing the corresponding matrix entries | we could send a row fromprocess 0 to process 1 as follows.float* entries;int* column_subscripts;int nonzeroes; /* number of nonzeroes in row */int position;int row_number;char* buffer[HUGE]; /* HUGE is a predefined constant */MPI_Status status;...if (my_rank == 0) {/* Get the number of nonzeros in the row. *//* Allocate storage for the row. *//* Initialize entries and column_subscripts */... 27

/* Now pack the data and send */position = 0;MPI_Pack(&nonzeroes, 1, MPI_INT, buffer, HUGE,&position, MPI_COMM_WORLD);MPI_Pack(&row_number, 1, MPI_INT, buffer, HUGE,&position, MPI_COMM_WORLD);MPI_Pack(entries, nonzeroes, MPI_FLOAT, buffer,HUGE, &position, MPI_COMM_WORLD);MPI_Pack(column_subscripts, nonzeroes, MPI_INT,buffer, HUGE, &position, MPI_COMM_WORLD);MPI_Send(buffer, position, MPI_PACKED, 1, 193,MPI_COMM_WORLD);} else { /* my_rank == 1 */MPI_Recv(buffer, HUGE, MPI_PACKED, 0, 193,MPI_COMM_WORLD, &status);position = 0;MPI_Unpack(buffer, HUGE, &position, &nonzeroes,1, MPI_INT, MPI_COMM_WORLD);MPI_Unpack(buffer, HUGE, &position, &row_number,1, MPI_INT, MPI_COMM_WORLD);/* Allocate storage for entries and column_subscripts */entries = (float *) malloc(nonzeroes*sizeof(float));column_subscripts = (int *) malloc(nonzeroes*sizeof(int));MPI_Unpack(buffer,HUGE, &position, entries,nonzeroes, MPI_FLOAT, MPI_COMM_WORLD);MPI_Unpack(buffer, HUGE, &position, column_subscripts,nonzeroes, MPI_INT, MPI_COMM_WORLD);}

28

5 Communicators and TopologiesThe use of communicators and topologies makes MPI di�erent from mostother message-passing systems. Recollect that, loosely speaking, a commu-nicator is a collection of processes that can send messages to each other. Atopology is a structure imposed on the processes in a communicator thatallows the processes to be addressed in di�erent ways. In order to illus-trate these ideas, we will develop code to implement Fox's algorithm [1] formultiplying two square matrices.5.1 Fox's AlgorithmWe assume that the factor matrices A = (aij) and B = (bij) have order n.We also assume that the number of processes, p; is a perfect square, whosesquare root evenly divides n: Say p = q2; and �n = n=q: In Fox's algorithm thefactor matrices are partitioned among the processes in a block checkerboardfashion. So we view our processes as a virtual two-dimensional q�q grid, andeach process is assigned an �n � �n submatrix of each of the factor matrices.More formally, we have a mapping� : f0; 1; : : : ; p� 1g �! f(s; t) : 0 � s; t � q � 1gthat is both one-to-one and onto. This de�nes our grid of processes: processi belongs to the row and column given by �(i): Further, the process withrank ��1(s; t) is assigned the submatricesAst = 0BB@ as��n;t��n � � � a(s+1)��n�1;t��n... ...as��n;(t+1)��n�1 � � � a(s+1)��n�1;(t+1)��n�1 1CCA ;and Bst = 0BB@ bs��n;t��n � � � b(s+1)��n�1;t��n... ...bs��n;(t+1)��n�1 � � � b(s+1)��n�1;(t+1)��n�1 1CCA :
29

For example, if p = 9; �(x) = (x=3; x mod 3); and n = 6; then A would bepartitioned as follows.Process 0 Process 1 Process 2A00 = a00 a01a10 a11 ! A01 = a02 a03a12 a13 ! A02 = a04 a05a14 a15 !Process 3 Process 4 Process 5A10 = a20 a21a30 a31 ! A11 = a22 a23a32 a33 ! A12 = a24 a25a34 a35 !Process 6 Process 7 Process 8A20 = a40 a41a50 a51 ! A21 = a42 a43a52 a53 ! A22 = a44 a45a54 a55 !
:

In Fox's algorithm, the block submatrices, Ars and Bst; s = 0; 1; : : : ; q�1;are multiplied and accumulated on process ��1(r; t): The basic algorithm is:for(step = 0; step < q; step++) {1. Choose a submatrix of A from each row of processes.2. In each row of processes broadcast the submatrixchosen in that row to the other processes inthat row.3. On each process, multiply the newly receivedsubmatrix of A by the submatrix of B currentlyresiding on the process.4. On each process, send the submatrix of B to theprocess directly above. (On processes in thefirst row, send the submatrix to the last row.)}The submatrix chosen in the rth row is Ar;u; whereu = (r + step) mod q:5.2 CommunicatorsIf we try to implement Fox's algorithm, it becomes apparent that our workwill be greatly facilitated if we can treat certain subsets of processes as acommunication universe | at least on a temporary basis. For example, inthe pseudo-code 30

2. In each row of processes broadcast the submatrixchosen in that row to the other processes inthat row,it would be useful to treat each row of processes as a communication universe,while in the statement4. On each process, send the submatrix of B to theprocess directly above. (On processes in thefirst row, send the submatrix to the last row.)it would be useful to treat each column of processes as a communicationuniverse.The mechanism that MPI provides for treating a subset of processes asa \communication" universe is the communicator. Up to now, we've beenloosely de�ning a communicator as a collection of processes that can sendmessages to each other. However, now that we want to construct our owncommunicators, we will need a more careful discussion.In MPI, there are two types of communicators: intra-communicatorsand inter-communicators. Intra-communicators are essentially a collectionof processes that can send messages to each other and engage in collectivecommunication operations. For example, MPI COMM WORLD is an intra-communicator, and we would like for each row and each column of processesin Fox's algorithm to form an intra-communicator. Inter-communicators, asthe name implies, are used for sending messages between processes belongingto disjoint intra-communicators. For example, an inter-communicator wouldbe useful in an environment that allowed one to dynamically create processes:a newly created set of processes that formed an intra-communicator couldbe linked to the original set of processes (e.g., MPI COMM WORLD) by aninter-communicator. We will only discuss intra-communicators. The inter-ested reader is referred to [4] for details on the use of inter-communicators.A minimal (intra-)communicator is composed of� a Group, and� a Context.A group is an ordered collection of processes. If a group consists of p pro-cesses, each process in the group is assigned a unique rank, which is just a31

nonnegative integer in the range 0; 1; : : : ; p� 1: A context can be thought ofas a system-de�ned tag that is attached to a group. So two processes thatbelong to the same group and that use the same context can communicate.This pairing of a group with a context is the most basic form of a commu-nicator. Other data can be associated to a communicator. In particular,a structure or topology can be imposed on the processes in a communica-tor, allowing a more natural addressing scheme. We'll discuss topologies insection 5.5.5.3 Working with Groups, Contexts, and Communica-torsTo illustrate the basics of working with communicators, let's create a com-municator whose underlying group consists of the processes in the �rst row ofour virtual grid. Suppose that MPI COMM WORLD consists of p processes,where q2 = p: Let's also suppose that �(x) = (x=q; x mod q): So the �rst rowof processes consists of the processes with ranks 0, 1, . . . , q � 1: (Here, theranks are in MPI COMM WORLD.) In order to create the group of our newcommunicator, we can execute the following code.MPI_Group MPI_GROUP_WORLD;MPI_Group first_row_group;MPI_Comm first_row_comm;int row_size;int* process_ranks;/* Make a list of the processes in the new* communicator */process_ranks = (int*) malloc(q*sizeof(int));for (proc = 0; proc < q; proc++)process_ranks[proc] = proc;/* Get the group underlying MPI_COMM_WORLD */MPI_Comm_group(MPI_COMM_WORLD, &MPI_GROUP_WORLD);/* Create the new group */MPI_Group_incl(MPI_GROUP_WORLD, q, process_ranks,32

&first_row_group);/* Create the new communicator */MPI_Comm_create(MPI_COMM_WORLD, first_row_group,&first_row_comm);This code proceeds in a fairly straightforward fashion to build the newcommunicator. First it creates a list of the processes to be assigned tothe new communicator. Then it creates a group consisting of these pro-cesses. This required two commands: �rst get the group associated withMPI COMM WORLD, since this is the group from which the processes in thenew group will be taken; then create the group with MPI Group incl. Fi-nally, the actual communicator is created with a call to MPI Comm create.The call to MPI Comm create implicitly associates a context with the newgroup. The result is the communicator �rst row comm. Now the processes in�rst row comm can perform collective communication operations. For exam-ple, process 0 (in �rst row group) can broadcast A00 to the other processes in�rst row group.int my_rank_in_first_row;float* A_00;/* my_rank is process rank in MPI_GROUP_WORLD */if (my_rank < q) {MPI_Comm_rank(first_row_comm,&my_rank_in_first_row);/* Allocate space for A_00, order = n_bar */A_00 = (float*) malloc (n_bar*n_bar*sizeof(float));if (my_rank_in_first_row == 0) {/* Initialize A_00 */...}MPI_Bcast(A_00, n_bar*n_bar, MPI_FLOAT, 0,first_row_comm);}Groups and communicators are opaque objects. From a practical stand-point, this means that the details of their internal representation depend on33

the particular implementation of MPI, and, as a consequence, they cannotbe directly accessed by the user. Rather the user accesses a handle thatreferences the opaque object, and the opaque objects are manipulated byspecial MPI functions, for example, MPI Comm create, MPI Group incl, andMPI Comm group.Contexts are not explicitly used in any MPI functions. Rather they areimplicitly associated with groups when communicators are created.The syntax of the commands we used to create �rst row comm is fairlyself-explanatory. The �rst commandint MPI_Comm_group(MPI_Comm comm, MPI_Group* group)simply returns the group underlying the communicator comm.The second commandint MPI_Group_incl(MPI_Group old_group, int new_group_size,int* ranks_in_old_group, MPI_Group* new_group)creates a new group from a list of processes in the existing group old group.The number of processes in the new group is new group size, and the pro-cesses to be included are listed in ranks in old group. Process 0 in new grouphas rank ranks in old group[0] in old group, process 1 in new group has rankranks in old group[1] in old group, etc.The �nal commandint MPI_Comm_create(MPI_Comm old_comm, MPI_Group new_group,MPI_Comm* new_comm)associates a context with the group new group and creates the communicatornew comm. All of the processes in new group belong to the group underlyingold comm.There is an extremely important distinction between the �rst two func-tions and the third. MPI Comm group and MPI Group incl, are both localoperations. That is, there is no communication among processes involved intheir execution. However, MPI Comm create is a collective operation. All theprocesses in old comm must call MPI Comm create with the same arguments.The Standard [4] gives three reasons for this:1. It allows the implementation to layer MPI Comm create on top of reg-ular collective communications.34

2. It provides additional safety.3. It permits implementations to avoid communication related to contextcreation.Note that since MPI Comm create is collective, it will behave, in terms of thedata transmitted, as if it synchronizes. In particular, if several communica-tors are being created, they must be created in the same order on all theprocesses.5.4 MPI Comm splitIn our matrix multiplication program we need to create multiple communi-cators | one for each row of processes and one for each column. This wouldbe an extremely tedious process if p were large and we had to create eachcommunicator using the three functions discussed in the previous section.Fortunately, MPI provides a function, MPI Comm split that can create sev-eral communicators simultaneously. As an example of its use, we'll createone communicator for each row of processes.MPI_Comm my_row_comm;int my_row;/* my_rank is rank in MPI_COMM_WORLD.* q*q = p */my_row = my_rank/q;MPI_Comm_split(MPI_COMM_WORLD, my_row, my_rank,&my_row_comm);The single call to MPI Comm split creates q new communicators, all of themhaving the same name, my row comm. For example, if p = 9; the groupunderlying my row comm will consist of the processes 0, 1, and 2 on processes0, 1, and 2. On processes 3, 4, and 5, the group underlying my row commwill consist of the processes 3, 4, and 5, and on processes 6, 7, and 8 it willconsist of processes 6, 7, and 8.The syntax of MPI Comm split isint MPI_Comm_split(MPI_Comm old_comm, int split_key,int rank_key, MPI_Comm* new_comm)35

It creates a new communicator for each value of split key. Processes withthe same value of split key form a new group. The rank in the new groupis determined by the value of rank key. If process A and process B callMPI Comm split with the same value of split key, and the rank key argumentpassed by process A is less than that passed by process B; then the rank ofA in the group underlying new comm will be less than the rank of processB: If they call the function with the same value of rank key, the system willarbitrarily assign one of the processes a lower rank.MPI Comm split is a collective call, and it must be called by all the pro-cesses in old comm. The function can be used even if the user doesn't wishto assign every process to a new communicator. This can be accomplishedby passing the prede�ned constant MPI UNDEFINED as the split key argu-ment. Processes doing this will have the prede�ned value MPI COMM NULLreturned in new comm.5.5 TopologiesRecollect that it is possible to associate additional information| informationbeyond the group and context | with a communicator. This additionalinformation is said to be cached with the communicator, and one of the mostimportant pieces of information that can be cached with a communicator isa topology. In MPI, a topology is just a mechanism for associating di�erentaddressing schemes with the processes belonging to a group. Note that MPItopologies are virtual topologies | there may be no simple relation betweenthe process structure de�ned by a virtual topology, and the actual underlyingphysical structure of the parallel machine.There are essentially two types of virtual topologies that can be createdin MPI | a cartesian or grid topology and a graph topology. Conceptually,the former is subsumed by the latter. However, because of the importance ofgrids in applications, there is a separate collection of functions in MPI whosepurpose is the manipulation of virtual grids.In Fox's algorithmwe wish to identify the processes inMPI COMM WORLDwith the coordinates of a square grid, and each row and each column of thegrid needs to form its own communicator. Let's look at one method forbuilding this structure.We begin by associating a square grid structure withMPI COMM WORLD.In order to do this we need to specify the following information.36

1. The number of dimensions in the grid. We have 2.2. The size of each dimension. In our case, this is just the number of rowsand the number of columns. We have q rows and q columns.3. The periodicity of each dimension. In our case, this information spec-i�es whether the �rst entry in each row or column is \adjacent" tothe last entry in that row or column, respectively. Since we want a\circular" shift of the submatrices in each column, we want the seconddimension to be periodic. It's unimportant whether the �rst dimensionis periodic.4. Finally, MPI gives the user the option of allowing the system to opti-mize the mapping of the grid of processes to the underlying physicalprocessors by possibly reordering the processes in the group underlyingthe communicator. Since we don't need to preserve the ordering ofthe processes in MPI COMM WORLD, we should allow the system toreorder.Having made all these decisions, we simply execute the following code.MPI_Comm grid_comm;int dimensions[2];int wrap_around[2];int reorder = 1;dimensions[0] = dimensions[1] = q;wrap_around[0] = wrap_around[1] = 1;MPI_Cart_create(MPI_COMM_WORLD, 2, dimensions,wrap_around, reorder, &grid_comm);After executing this code, the communicator grid comm will contain all theprocesses inMPI COMM WORLD (possibly reordered), and it will have a two-dimensional cartesian coordinate system associated. In order for a processto determine its coordinates, it simply calls the function MPI Cart coords:int coordinates[2];int my_grid_rank; 37

MPI_Comm_rank(grid_comm, &my_grid_rank);MPI_Cart_coords(grid_comm, my_grid_rank, 2,coordinates);Notice that we needed to callMPI Comm rank in order to get the process rankin grid comm. This was necessary because in our call to MPI Cart create weset the reorder ag to 1, and hence the original process ranking in MPI -COMM WORLD may have been changed in grid comm.The \inverse" to MPI Cart coords is MPI Cart rank.int MPI_Cart_rank(grid_comm, coordinates,&grid_rank)Given the coordinates of a process, MPI Cart rank returns the rank of theprocess in its third parameter process rank.The syntax of MPI Cart create isint MPI_Cart_create(MPI_Comm old_comm,int number_of_dims, int* dim_sizes, int* periods,int reorder, MPI_Comm* cart_comm)MPI Cart create creates a new communicator, cart comm by caching a carte-sian topology with old comm. Information on the structure of the cartesiantopology is contained in the parameters number of dims, dim sizes, and peri-ods. The �rst of these, number of dims, contains the number of dimensionsin the cartesian coordinate system. The next two, dim sizes and periods,are arrays with order equal to number of dims. The array dim sizes speci�esthe order of each dimension, and periods speci�es whether each dimension iscircular or linear.The processes in cart comm are ranked in row-major order. That is, the�rst row consists of processes 0; 1; : : : ; dim sizes[0]�1; the second row consistsof processes dim sizes[0]; dim sizes[0] + 1; : : : ; 2*dim sizes[0] � 1; etc. Thusit may be advantageous to change the relative ranking of the processes inold comm. For example, suppose the physical topology is a 3 � 3 grid, andthe processes (numbers) in old comm are assigned to the processors (gridsquares) as follows. 3 4 50 1 26 7 838

Clearly, the performance of Fox's algorithm would be improved if we re-numbered the processes. However, since the user doesn't know what theexact mapping of processes to processors is, we must let the system do it bysetting the reorder parameter to 1.Since MPI Cart create constructs a new communicator, it is a collectiveoperation.The syntax of the address information functions isint MPI_Cart_rank(MPI_Comm comm, int* coordinates,int* rank);int MPI_Cart_coords(MPI_Comm comm, int rank,int number_of_dims, int* coordinates)MPI Cart rank returns the rank in the cartesian communicator comm of theprocess with cartesian coordinates coordinates. So coordinates is an array withorder equal to the number of dimensions in the cartesian topology associatedwith comm. MPI Cart coords is the inverse to MPI Cart rank: it returns thecoordinates of the process with rank rank in the cartesian communicatorcomm. Note that both of these functions are local.5.6 MPI Cart subWe can also partition a grid into grids of lower dimension. For example, wecan create a communicator for each row of the grid as follows.int varying_coords[2];MPI_Comm row_comm;varying_coords[0] = 0; varying_coords[1] = 1;MPI_Cart_sub(grid_comm, varying_coords, &row_comm);The call to MPI Cart sub creates q new communicators. The varying coordsargument is an array of boolean. It speci�es whether each dimension \be-longs" to the new communicator. Since we're creating communicators for therows of the grid, each new communicator consists of the processes obtainedby �xing the row coordinate and letting the column coordinate vary. Hencewe assigned varying coords[0] the value 0 | the �rst coordinate doesn't vary| and we assigned varying coords[1] the value 1 | the second coordinate39

varies. On each process, the new communicator is returned in row comm. Inorder to create the communicators for the columns, we simply reverse theassignments to the entries in varying coords.MPI_Comm col_comm;varying_coords[0] = 1; varying_coords[1] = 0;MPI_Cart_sub(grid_comm, varying_coord, col_comm);Note the similarity of MPI Cart sub to MPI Comm split. They performsimilar functions | they both partition a communicator into a collection ofnew communicators. However, MPI Cart sub can only be used with a com-municator that has an associated cartesian topology, and the new communi-cators can only be created by �xing (or varying) one or more dimensions ofthe old communicators. Also note that MPI Cart sub is, likeMPI Comm split,a collective operation.5.7 Implementation of Fox's AlgorithmTo complete our discussion, let's write the code to implement Fox's algorithm.First, we'll write a function that creates the various communicators andassociated information. Since this requires a large number of variables, andwe'll be using this information in other functions, we'll put it into a structto facilitate passing it among the various functions.typedef struct {int p; /* Total number of processes */MPI_Comm comm; /* Communicator for entire grid */MPI_Comm row_comm; /* Communicator for my row */MPI_Comm col_comm; /* Communicator for my col */int q; /* Order of grid */int my_row; /* My row number */int my_col; /* My column number */int my_rank; /* My rank in the grid communicator */} GRID_INFO_TYPE;/* We assume space for grid has been allocated in the* calling routine. 40

/void Setup_grid(GRID_INFO_TYPE grid) {int old_rank;int dimensions[2];int periods[2];int coordinates[2];int varying_coords[2];/* Set up Global Grid Information */MPI_Comm_size(MPI_COMM_WORLD, &(grid->p));MPI_Comm_rank(MPI_COMM_WORLD, &old_rank);grid->q = (int) sqrt((double) grid->p);dimensions[0] = dimensions[1] = grid->q;periods[0] = periods[1] = 1;MPI_Cart_create(MPI_COMM_WORLD, 2, dimensions, periods,1, &(grid->comm));MPI_Comm_rank(grid->comm, &(grid->my_rank));MPI_Cart_coords(grid->comm, grid->my_rank, 2,coordinates);grid->my_row = coordinates[0];grid->my_col = coordinates[1];/* Set up row and column communicators */varying_coords[0] = 0; varying_coords[1] = 1;MPI_Cart_sub(grid->comm, varying_coords,&(grid->row_comm));varying_coords[0] = 1; varying_coords[1] = 0;MPI_Cart_sub(grid->comm, varying_coords,&(grid->col_comm));} /* Setup_grid */Notice that since each of our communicators has an associated topology,we constructed them using the topology construction functions | MPI -Cart create and MPI Cart sub | rather than the more general communicatorconstruction functions MPI Comm create and MPI Comm split.Now let's write the function that does the actual multiplication. We'llassume that the user has supplied the type de�nitions and functions for the lo-41

cal matrices. Speci�cally, we'll assume she has supplied a type de�nition forLOCAL MATRIX TYPE, a corresponding derived type, DERIVED LOCAL -MATRIX, and three functions: Local matrix multiply, Local matrix allocate,and Set to zero. We also assume that storage for the parameters has beenallocated in the calling function, and all the parameters, except the productmatrix local C, have been initialized.void Fox(int n, GRID_INFO_TYPE* grid,LOCAL_MATRIX_TYPE* local_A,LOCAL_MATRIX_TYPE* local_B,LOCAL_MATRIX_TYPE* local_C) {LOCAL_MATRIX_TYPE* temp_A;int step;int bcast_root;int n_bar; /* order of block submatrix = n/q */int source;int dest;int tag = 43;MPI_Status status;n_bar = n/grid->q;Set_to_zero(local_C);/* Calculate addresses for circular shift of B */source = (grid->my_row + 1) % grid->q;dest = (grid->my_row + grid->q - 1) % grid->q;/* Set aside storage for the broadcast block of A */temp_A = Local_matrix_allocate(n_bar);for (step = 0; step < grid->q; step++) {bcast_root = (grid->my_row + step) % grid->q;if (bcast_root == grid->my_col) {MPI_Bcast(local_A, 1, DERIVED_LOCAL_MATRIX,bcast_root, grid->row_comm);Local_matrix_multiply(local_A, local_B,local_C); 42

} else {MPI_Bcast(temp_A, 1, DERIVED_LOCAL_MATRIX,bcast_root, grid->row_comm);Local_matrix_multiply(temp_A, local_B,local_C);}MPI_Send(local_B, 1, DERIVED_LOCAL_MATRIX, dest, tag,grid->col_comm);MPI_Recv(local_B, 1, DERIVED_LOCAL_MATRIX, source, tag,grid->col_comm, &status);} /* for */} /* Fox */

43

6 Where To Go From Here6.1 What We Haven't DiscussedMPI is a large library. The Standard [4] is over 200 pages long and it de�nesmore than 125 functions. As a consequence, this Guide has covered onlya small fraction of MPI, and many readers will fail to �nd a discussion offunctions that they would �nd very useful in their applications. So we brieylist some of the more important ideas in MPI that we have not discussedhere.1. Communication Modes. We have used only the standard communi-cation mode for send. This means that it is up to the system to decidewhether the message is bu�ered. MPI provides three other commu-nication modes: bu�ered, synchronous, and ready. In bu�ered mode,the user explicitly controls the bu�ering of outgoing messages. In syn-chronous mode, a send will not complete until a matching receive isposted. In ready mode, a send may be started only if a matchingreceive has already been posted. MPI provides three additional sendfunctions for these modes.2. Nonblocking Communication. We have used only blocking sendsand receives (MPI Send and MPI Recv.) For the send, this means thatthe call won't return until the message data and envelope have beenbu�ered or sent | i.e., until the memory referenced in the call toMPI Send is available for re-use. For the receive, this means that thecall won't return until the data has been received into the memoryreferenced in the call toMPI Recv. Many applications can improve theirperformance by using nonblocking communication. This means thatthe calls to send/receive may return before the operation completes.For example, if the machine has a separate communication processor,a non-blocking send could simply notify the communication processorthat it should begin composing and sending the message. MPI providesnonblocking sends in each of the four modes and a nonblocking receive.It also provides various utility functions for determining the completionstatus of a non-blocking operation.3. Inter-communicators. Recollect that MPI provides two types ofcommunicators: intra-communicators and inter-communicators. Inter-44

communicators can be used for point-to-point communications betweenprocesses belonging to distinct intra-communicators.There are many other functions available to users of MPI. If we haven'tdiscussed a facility you need, please consult the Standard [4] to determinewhether it is part of MPI.6.2 Implementations of MPIIf you don't have an implementation of MPI, there are three versions thatare freely available by anonymous ftp from the following sites.� Argonne National Lab/Mississippi State University. The address isinfo.mcs.anl.gov, and the directory is pub/mpi.� Edinburgh University. The address is ftp.epcc.ed.ac.uk, and the direc-tory is pub/chimp/release.� Ohio Supercomputer Center. The address is tbag.osc.edu, and the di-rectory is pub/lam.All of these run on networks of UNIX workstations. The Argonne/MississippiState and Edinburgh versions also run on various parallel processors. Checkthe \README" �les to see if your machine(s) are supported.6.3 More Information on MPIThere is an MPI FAQ available by anonymous ftp at� Mississippi State University. The address is ftp.erc.msstate.edu, and the�le is pub/mpi/faq.There are also numerous web pages devoted to MPI. A few of these are� http://www.epm.ornl.gov/~walker/mpi. The Oak Ridge National LabMPI web page.� http://www.erc.msstate.edu/mpi. The Mississippi State MPI web page.� http://www.mcs.anl.gov/mpi. The Argonne MPI web page.45

Each of these sites contains a wealth of information about MPI. Of particularnote, the Mississippi State page contains a bibliography of papers on MPI,and the Argonne page contains a collection of test MPI programs.The MPI Standard [4] is currently available from each of the sites above.This is, of course, the de�nitive statement of what MPI is. So if you're notclear on something, this is the �nal arbiter. It also contains a large numberof nice examples of uses of the various MPI functions. So it is considerablymore than just a reference. Currently, several members of the MPI Forumare working on an annotated version of the MPI standard [5].The book [2] is a tutorial introduction to MPI. It provides numerouscomplete examples of MPI programs.The book [6] contains a tutorial introduction to MPI (on which this guideis based). It also contains a more general introduction to parallel processingand the programming of message-passing machines.The Usenet newsgroup, comp.parallel.mpi, provides information on up-dates to all of these documents and software.6.4 The Future of MPIAs it is currently de�ned, MPI fails to specify two critical concepts: I/O andthe creation/destruction of processes. Work has already been started on thedevelopment of both I/O facilities and dynamic process creation. Informationon the former can be obtained from http://lovelace.nas.nasa.gov/MPI-IO/mpi-io.html, and information on the latter can be found on the Argonne MPI webpage. Signi�cant developments are invariably posted to comp.parallel.mpi.

46

A Compiling and Running MPI ProgramsThis section is intended to give the barest outline of how to compile and runa program using each of the freely available versions of MPI. Please consultthe documentation that comes with these packages for further details.In each case, we assume that you wish to run your program on a homo-geneous network of UNIX workstations, and that the executables, libraries,and header �les have been installed in a public directory on the machines onwhich you are compiling and executing your program.A.1 MPICHHere, we assume that the MPICH �les are stored in the following �les.� Executables: /usr/local/mpi/bin� Libraries: /usr/local/mpi/lib� Header �les: /usr/local/mpi/includeTo compile the C source program prog.c, you should type% cc -o prog prog.c -I/usr/local/mpi/include\-L/usr/local/mpi/lib -lmpiIn order to run the program with, say, 4 processes, you should �rst copy theexecutable to your home directory on each machine (unless the directory isNFS mounted), and then type% mpirun -np 4 progThis assumes that your system has a generic con�guration �le that listsmachines on which MPI programs can be run.A.2 CHIMPBefore using CHIMP, you need to be sure the CHIMP home directory is inyour path on all the machines on which you intend to run MPI programs.For example, if the CHIMP home directory is /home/chimp on each machine,and you use csh, you should add the following lines to your .cshrc on eachmachine. 47

setenv CHIMPHOME /home/chimpset PATH $CHIMPHOME/bin:$PATHAfter modifying your .cshrc �le, you should change to your home directoryon each machine and execute the following commands.% cd% source .cshrc% ln -s $CHIMPHOME/chimprc .chimpv2rcNote that these commands only need to be carried out once | when you useCHIMP again, you can skip these steps.If your MPI source program is called prog.c, you can compile it with% mpicc -o prog prog.cBefore executing your program, you need to create a CHIMP con�guration�le. This contains a list of the executables, hosts on which to run the pro-gram, and directories containing the executables. Its basic format is a list oflines having the form:(<executable>): host=<hostname>, dir=<directory>For example, to run prog on four machines, we might create a �le calledprog.con�g that contains the following lines.(prog): host=mobydick, dir=/home/peter(prog): host=kingkong, dir=/home/peter(prog): host=euclid, dir=/home/peter(prog): host=lynx, dir=/home/peterIn order to run the program, �rst copy the executable to the appropriatedirectory on each machine (unless the directory is NFS mounted), and thentype % mpirun prog.config
48

A.3 LAMBefore starting, make sure that the directory containing the LAM executablesis in your path on each machine on which you intend to run your program.For example, if the LAM executables are in /usr/local/lam/bin and you usecsh, you can simply add the following commands to your .cshrc �le.setenv LAMHOME /usr/local/lamset PATH $LAMHOME/bin:$PATHAfter modifying your .cshrc �le, you should change to your home directoryon each machine and execute the following commands.% cd% source .cshrcNote that these commands only need to be carried out once | when you useLAM again, you can skip these steps.Next create a �le listing the names of the hosts on which you intend torun MPI. For example, a 4 host �le might contain the following lines.mobydick.usfca.edukingkong.math.usfca.edueuclid.math.usfca.edulynx.cs.usfca.eduIf this �le is called lamhosts, the command recon veri�es that LAM can bestarted on each machine.% recon -v lamhostsrecon: testing n0 (mobydick.usfca.edu)recon: testing n1 (kingkong.math.usfca.edu)recon: testing n2 (euclid.math.usfca.edu)recon: testing n3 (lynx.cs.usfca.edu)To actually start up LAM on each machine, type% lamboot -v lamhostsLAM - Ohio Supercomputer Centerhboot n0 (mobydick.usfca.edu)...hboot n1 (kingkong.math.usfca.edu)...hboot n2 (euclid.math.usfca.edu)...hboot n3 (lynx.cs.usfca.edu)...49

In order to compile your program, type% hcc -o prog prog.c -lmpiIn order to run the program, �rst copy the executable to your home directoryon each machine (unless the directory is NFS mounted), and then type% mpirun -v n0-3 prog1362 prog running on n0 (o)14445 prog running on n112687 prog running on n21433 prog running on n3To shut down LAM, type% wipe -v lamhoststkill n0 (mobydick.usfca.edu)...tkill n1 (kingkong.math.usfca.edu)...tkill n2 (euclid.math.usfca.edu)...tkill n3 (lynx.cs.usfca.edu)...

50

References[1] Geo�rey Fox, et al., Solving Problems on Concurrent Processors, Engle-wood Cli�s, NJ, Prentice{Hall, 1988.[2] William Gropp, Ewing Lusk, and Anthony Skjellum, Using MPI:Portable Parallel Programming with the Message-Passing Interface,Cambridge, MA, MIT Press, 1994.[3] Brian W. Kernighan and Dennis M. Ritchie, The C Programming Lan-guage, 2nd ed., Englewood Cli�s, NJ, Prentice{Hall, 1988.[4] Message Passing Interface Forum, MPI: A Message-Passing InterfaceStandard , International Journal of Supercomputer Applications, vol 8,nos 3/4, 1994. Also available as Technical Report CS-94-230, ComputerScience Dept., University of Tennessee, Knoxville, TN, 1994.[5] Steve Otto, et al., MPI Annotated Reference Manual, Cambridge, MA,MIT Press, to appear.[6] Peter S. Pacheco, Parallel Programming with MPI, San Francisco, CA,Morgan Kaufmann, 1997.

51

