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Overview

• Probability density functions

• Univariate Gaussian

• Multivariate Gaussian

• Mahalanobis distance

• Properties of Gaussian distributions

• Graphical Gaussian models

• Read: Tipping chs 3 and 4

Continuous distributions
• Probability density function (pdf) for a continuous random variable X

P(a ≤ X ≤ b) =

∫ b

a

p(x)dx

therefore
P(x ≤ X ≤ x + δx) ' p(x)δx

• Example: Gaussian distribution

p(x) =
1

(2πσ2)1/2
exp−

{

(x − µ)2

2σ2

}

shorthand notation X ∼ N(µ, σ2)

• Standard normal (or Gaussian) distribution Z ∼ N(0,1)

• Normalization
∫ ∞

−∞

p(x)dx = 1
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• Cumulative distribution function

Φ(z) = P(Z ≤ z) =

∫ z

−∞

p(z′)dz′

• Expectation

E[g(X)] =

∫

g(x)p(x)dx

• mean, E[X]

• Variance E[(X − µ)2]

• For a Gaussian, mean = µ, variance = σ2

• Shorthand: x ∼ N(µ, σ2)



Bivariate Gaussian I

• Let X1 ∼ N(µ1, σ2
1) and X2 ∼ N(µ2, σ2

2)

• If X1 and X2 are independent

p(x1, x2) =
1

2π(σ2
1σ2

2)
1/2

exp−
1

2

{

(x1 − µ1)
2

σ2
1

+
(x2 − µ2)

2

σ2
2

}

• Let x =

(

x1

x2

)

, µ =

(

µ1

µ2

)

, Σ =

(

σ2
1 0
0 σ2

2

)

p(x) =
1

2π|Σ|1/2
exp−

1

2

{

(x − µ)TΣ−1(x − µ)
}
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Bivariate Gaussian II

• Covariance
• Σ is the covariance matrix

Σ = E[(x − µ)(x − µ)T ]

Σij = E[(xi − µi)(xj − µj)]

• Example: plot of weight vs
height for a population

Multivariate Gaussian

• P (x ∈ R) =
∫

R p(x)dx

• Multivariate Gaussian

p(x) =
1

(2π)d/2|Σ|1/2
exp

{

−
1

2
(x − µ)TΣ−1(x − µ)

}

• Σ is the covariance matrix

Σ = E[(x − µ)(x − µ)T ]

Σij = E[(xi − µi)(xj − µj)]



• Σ is symmetric

• Shorthand x ∼ N(µ,Σ)

• For p(x) to be a density, Σ must be positive definite

• Σ has d(d + 1)/2 parameters, the mean has a further d

Mahalanobis Distance
d2
Σ(xi,xj) = (xi − xj)

TΣ−1(xi − xj)

• d2
Σ(xi,xj) is called the Mahalanobis distance between xi and xj

• If Σ is diagonal, the contours of d2
Σ are axis-aligned ellipsoids

• If Σ is not diagonal, the contours of d2
Σ are rotated ellipsoids

Σ = UΛUT

where Λ is diagonal and U is a rotation matrix

• Σ is positive definite ⇒ entries in Λ are positive

Parameterization of the covariance matrix

• Fully general Σ =⇒ variables are correlated

• Spherical or isotropic. Σ = σ2I. Variables are independent

• Diagonal [Σ]ij = δijσ
2
i Variables are independent

• Rank-constrained: Σ = WW T + Ψ, with W being a d × q matrix with
q < d − 1 and Ψ diagonal. This is the factor analysis model. If Ψ = σ2I,
then with have the probabilistic principal components analysis (PPCA)
model

Transformations of Gaussian variables
• Linear transformations of Gaussian RVs are Gaussian

X ∼ N(µx,Σ)

Y = AX + b

Y ∼ N(Aµx + b, AΣAT)

• Sums of Gaussian RVs are Gaussian

Z = X + Y

E[Z] = E[X] + E[Y ]

var[Z] = var[X] + var[Y ] + 2covar[XY ]

if X and Y are independent var[Z] = var[X] + var[Y ]



Properties of the Gaussian distribution
• Gaussian has relatively simple analytical properties

• Central limit theorem. Sum (or mean) of M independent random variables is distributed
normally as M → ∞ (subject to a few general conditions)

• Diagonalization of covariance matrix =⇒ rotated variables are independent

• All marginal and conditional densities of a Gaussian are Gaussian

• The Gaussian is the distribution that maximizes the entropy H = −
∫

p(x) log p(x)dx
for fixed mean and covariance

Graphical Gaussian Models

Example:

x

y z

• Let X denote pulse rate

• Let Y denote measurement taken by machine 1, and Z denote measurement taken by
machine 2

• Model

X ∼ N(µx, vx)

Y = µy + wy(X − µx) + Ny

Z = µz + wz(X − µx) + Nz

noise Ny ∼ N(0, vN
y ), Nz ∼ N(0, vN

z ), independent

• (X, Y, Z) is jointly Gaussian; can do inference for X given Y = y and Z = z

As before

P (x, y, z) = P (x)P (y|x)P (z|x)

Show that

µ =







µx

µy

µz







Σ =







vx wyvx wzvx

wyvx w2
yvx + vN

y wywzvx

wzvx wywzvx w2
z vx + vN

z









Inference in Gaussian models
• Partition variables into two groups, X1 and X2

µ =

(

µ1

µ2

)

Σ =

(

Σ11 Σ12

Σ21 Σ22

)

µ
c
1|2 = µ1 + Σ12Σ

−1
22 (x2 − µ2)

Σc
1|2 = Σ11 − Σ12Σ

−1
22 Σ21

• For proof see §13.4 of Jordan (not examinable)

• Formation of joint Gaussian is analogous to formation of joint probability table for
discrete RVs. Propagation schemes are also possible for Gaussian RVs

Hybrid (discrete + continuous) networks

• Could discretize continuous variables, but this is ugly, and gives large
CPTs

• Better to use parametric families, e.g. Gaussian

• Works easily when continuous nodes are children of discrete nodes; we
then obtain a conditional Gaussian model


