The Gaussian Distribution

Chris Williams, School of Informatics, University of Edinburgh

Overview

- Probability density functions
- Univariate Gaussian
- Multivariate Gaussian
- Mahalanobis distance
- Properties of Gaussian distributions
- Graphical Gaussian models
- Read: Tipping chs 3 and 4

Continuous distributions

- Probability density function (pdf) for a continuous random variable X

$$
P(a \leq X \leq b)=\int_{a}^{b} p(x) d x
$$

therefore

$$
P(x \leq X \leq x+\delta x) \simeq p(x) \delta x
$$

- Example: Gaussian distribution

$$
p(x)=\frac{1}{\left(2 \pi \sigma^{2}\right)^{1 / 2}} \exp -\left\{\frac{(x-\mu)^{2}}{2 \sigma^{2}}\right\}
$$

shorthand notation $X \sim N\left(\mu, \sigma^{2}\right)$

- Standard normal (or Gaussian) distribution $Z \sim N(0,1)$
- Normalization

$$
\int_{-\infty}^{\infty} p(x) d x=1
$$

- Expectation

$$
E[g(X)]=\int g(x) p(x) d x
$$

- mean, $E[X]$
- Variance $E\left[(X-\mu)^{2}\right]$
- For a Gaussian, mean $=\mu$, variance $=\sigma^{2}$
- Shorthand: $x \sim N\left(\mu, \sigma^{2}\right)$
- Cumulative distribution function

$$
\Phi(z)=P(Z \leq z)=\int_{-\infty}^{z} p\left(z^{\prime}\right) d z^{\prime}
$$

Bivariate Gaussian I

- Let $X_{1} \sim N\left(\mu_{1}, \sigma_{1}^{2}\right)$ and $X_{2} \sim N\left(\mu_{2}, \sigma_{2}^{2}\right)$
- If X_{1} and X_{2} are independent

$$
p\left(x_{1}, x_{2}\right)=\frac{1}{2 \pi\left(\sigma_{1}^{2} \sigma_{2}^{2}\right)^{1 / 2}} \exp -\frac{1}{2}\left\{\frac{\left(x_{1}-\mu_{1}\right)^{2}}{\sigma_{1}^{2}}+\frac{\left(x_{2}-\mu_{2}\right)^{2}}{\sigma_{2}^{2}}\right\}
$$

- Let $\mathbf{x}=\binom{x_{1}}{x_{2}}, \boldsymbol{\mu}=\binom{\mu_{1}}{\mu_{2}}, \Sigma=\left(\begin{array}{cc}\sigma_{1}^{2} & 0 \\ 0 & \sigma_{2}^{2}\end{array}\right)$

$$
p(\mathrm{x})=\frac{1}{2 \pi|\Sigma|^{1 / 2}} \exp -\frac{1}{2}\left\{(\mathrm{x}-\boldsymbol{\mu})^{T} \Sigma^{-1}(\mathrm{x}-\boldsymbol{\mu})\right\}
$$

Bivariate Gaussian II

- Covariance
- Σ is the covariance matrix
- Example: plot of weight vs
height for a population

$$
\begin{aligned}
\Sigma & =E\left[(\mathbf{x}-\boldsymbol{\mu})(\mathbf{x}-\boldsymbol{\mu})^{T}\right] \\
\Sigma_{i j} & =E\left[\left(x_{i}-\mu_{i}\right)\left(x_{j}-\mu_{j}\right)\right]
\end{aligned}
$$

Multivariate Gaussian

- $P(\mathrm{x} \in \mathcal{R})=\int_{\mathcal{R}} p(\mathrm{x}) d \mathrm{x}$
- Multivariate Gaussian

$$
p(\mathrm{x})=\frac{1}{(2 \pi)^{d / 2}|\Sigma|^{1 / 2}} \exp \left\{-\frac{1}{2}(\mathrm{x}-\boldsymbol{\mu})^{T} \Sigma^{-1}(\mathrm{x}-\boldsymbol{\mu})\right\}
$$

- Σ is the covariance matrix

$$
\begin{aligned}
\Sigma & =E\left[(\mathbf{x}-\boldsymbol{\mu})(\mathbf{x}-\boldsymbol{\mu})^{T}\right] \\
\Sigma_{i j} & =E\left[\left(x_{i}-\mu_{i}\right)\left(x_{j}-\mu_{j}\right)\right]
\end{aligned}
$$

- Σ is symmetric
- Shorthand $\mathrm{x} \sim N(\boldsymbol{\mu}, \boldsymbol{\Sigma})$
- For $p(\mathbf{x})$ to be a density, Σ must be positive definite
- Σ has $d(d+1) / 2$ parameters, the mean has a further d

Parameterization of the covariance matrix

- Fully general $\Sigma \Longrightarrow$ variables are correlated
- Spherical or isotropic. $\Sigma=\sigma^{2} I$. Variables are independent
- Diagonal $[\Sigma]_{i j}=\delta_{i j} \sigma_{i}^{2}$ Variables are independent
- Rank-constrained: $\Sigma=W W^{T}+\Psi$, with W being a $d \times q$ matrix with $q<d-1$ and ψ diagonal. This is the factor analysis model. If $\psi=\sigma^{2} I$, then with have the probabilistic principal components analysis (PPCA) model

Mahalanobis Distance

$$
d_{\Sigma}^{2}\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)=\left(\mathbf{x}_{i}-\mathbf{x}_{j}\right)^{T} \Sigma^{-1}\left(\mathbf{x}_{i}-\mathbf{x}_{j}\right)
$$

- $d_{\Sigma}^{2}\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)$ is called the Mahalanobis distance between \mathbf{x}_{i} and \mathbf{x}_{j}
- If Σ is diagonal, the contours of d_{Σ}^{2} are axis-aligned ellipsoids
- If Σ is not diagonal, the contours of d_{Σ}^{2} are rotated ellipsoids

$$
\Sigma=U \Lambda U^{T}
$$

where \wedge is diagonal and U is a rotation matrix

- Σ is positive definite \Rightarrow entries in \wedge are positive

Transformations of Gaussian variables

- Linear transformations of Gaussian RVs are Gaussian

$$
\begin{aligned}
& \mathbf{X} \sim N\left(\boldsymbol{\mu}_{x}, \boldsymbol{\Sigma}\right) \\
& \mathbf{Y}=A \mathbf{X}+\mathbf{b} \\
& \mathbf{Y} \sim N\left(A \boldsymbol{\mu}_{x}+\mathbf{b}, A \Sigma A^{T}\right)
\end{aligned}
$$

- Sums of Gaussian RVs are Gaussian

$$
\begin{aligned}
& Z=X+Y \\
& E[Z]=E[X]+E[Y]
\end{aligned}
$$

$$
\operatorname{var}[Z]=\operatorname{var}[X]+\operatorname{var}[Y]+2 \operatorname{covar}[X Y]
$$

if X and Y are independent $\operatorname{var}[Z]=\operatorname{var}[X]+\operatorname{var}[Y]$

Properties of the Gaussian distribution

- Gaussian has relatively simple analytical properties
- Central limit theorem. Sum (or mean) of M independent random variables is distributed normally as $M \rightarrow \infty$ (subject to a few general conditions)
- Diagonalization of covariance matrix \Longrightarrow rotated variables are independent
- All marginal and conditional densities of a Gaussian are Gaussian
- The Gaussian is the distribution that maximizes the entropy $H=-\int p(\mathbf{x}) \log p(\mathbf{x}) d \mathbf{x}$ for fixed mean and covariance

Graphical Gaussian Models

Example:

- Let X denote pulse rate
- Let Y denote measurement taken by machine 1, and Z denote measurement taken by machine 2
- Model

$$
X \sim N\left(\mu_{x}, v_{x}\right)
$$

$$
Y=\mu_{y}+w_{y}\left(X-\mu_{x}\right)+N_{y}
$$

$$
Z=\mu_{z}+w_{z}\left(X-\mu_{x}\right)+N_{z}
$$

$$
\text { noise } N_{y} \sim N\left(0, v_{y}^{N}\right), N_{z} \sim N\left(0, v_{z}^{N}\right) \text {, independent }
$$

- (X, Y, Z) is jointly Gaussian; can do inference for X given $Y=y$ and $Z=z$

As before

$$
P(x, y, z)=P(x) P(y \mid x) P(z \mid x)
$$

Show that

$$
\begin{gathered}
\mu=\left(\begin{array}{c}
\mu_{x} \\
\mu_{y} \\
\mu_{z}
\end{array}\right) \\
\Sigma=\left(\begin{array}{ccc}
v_{x} & w_{y} v_{x} & w_{z} v_{x} \\
w_{y} v_{x} & w_{y}^{2} v_{x}+v_{y}^{N} & w_{y} w_{z} v_{x} \\
w_{z} v_{x} & w_{y} w_{z} v_{x} & w_{z}^{2} v_{x}+v_{z}^{N}
\end{array}\right)
\end{gathered}
$$

Inference in Gaussian models

- Partition variables into two groups, \mathbf{X}_{1} and \mathbf{X}_{2}

$$
\begin{gathered}
\boldsymbol{\mu}=\binom{\boldsymbol{\mu}_{1}}{\boldsymbol{\mu}_{2}} \\
\Sigma=\left(\begin{array}{cc}
\Sigma_{11} & \Sigma_{12} \\
\Sigma_{21} & \Sigma_{22}
\end{array}\right) \\
\boldsymbol{\mu}_{1 \mid 2}^{c}=\mu_{1}+\Sigma_{12} \Sigma_{22}^{-1}\left(\mathrm{x}_{2}-\mu_{2}\right) \\
\Sigma_{1 \mid 2}^{c}=\Sigma_{11}-\Sigma_{12} \Sigma_{22}^{-1} \Sigma_{21}
\end{gathered}
$$

- For proof see $\S 13.4$ of Jordan (not examinable)
- Formation of joint Gaussian is analogous to formation of joint probability table for discrete RVs. Propagation schemes are also possible for Gaussian RVs

Hybrid (discrete + continuous) networks

- Could discretize continuous variables, but this is ugly, and gives large CPTs
- Better to use parametric families, e.g. Gaussian
- Works easily when continuous nodes are children of discrete nodes; we then obtain a conditional Gaussian model

