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) ] e Probability density function (pdf) for a continuous random variable X
Chris Williams, School of Informatics, University of Edinburgh

Pla< X <b) = /bp(:c)d:c

a

Overview

therefore
Probability density functions
° ility ity function Pz < X <z + 6z) ~p(x)dx

Univariate Gaussian

e Example: Gaussian distribution

o Multivariate Gaussian _ 1 (z—p)?
p@@) = (2mo2)1/2 P { 202
e Mahalanobis distance shorthand notation X ~ N(y, 02)
o Properties of Gaussian distributions e Standard normal (or Gaussian) distribution Z ~ N (0, 1)
e Graphical Gaussian models e Normalization
o Read: Tipping chs 3 and 4 [ p(z)dz =1
e Expectation
o4 ElCO) = [ aep(e)do
0.3 e mean, E[X]
02l e Variance E[(X — p)?]

e For a Gaussian, mean = p, variance = o2
0.1

e Shorthand:  ~ N(u,0?)
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e Cumulative distribution function
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Bivariate Gaussian |

e Let X7 ~ N(ul,a%) and X5 ~ N(,LLQ,U%)
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Bivariate Gaussian Il Multivariate Gaussian
e Covariance
e 3 is the covariance matrix e P(xeR) = [rp(x)dx
> =EB(x—p)(x—p!] ﬂ o _
e Multivariate Gaussian
S..—=F Ly Sy
ij [(zi — pi) (@5 — )] L p(x) = (27r)d/12|Z\1/2 exPp {_%(X )T (x - “)}
e Example: plot of weight vs
height for a population

e X is the covariance matrix
== B[(x— pw)(x - w)7]

i = El(z; — pi) (@5 — pj)]



3~ is symmetric
Shorthand x ~ N(u, )
For p(x) to be a density, >~ must be positive definite

5 has d(d 4+ 1)/2 parameters, the mean has a further d

Parameterization of the covariance matrix
Fully general > —= variables are correlated
Spherical or isotropic. & = o21. Variables are independent

Diagonal [X];; = 5z~j0i2 Variables are independent

Rank-constrained: ¥ = WW7 + W, with W being a d x ¢ matrix with

g < d—1 and W diagonal. This is the factor analysis model. If W = 521,
then with have the probabilistic principal components analysis (PPCA)
model

Mahalanobis Distance

3 (xi,%5) = (xi — ;)" Z 7 (xi — x;)

dZ (x;,x;) is called the Mahalanobis distance between x; and x;

If 5 is diagonal, the contours of d2 are axis-aligned ellipsoids

If = is not diagonal, the contours of dZ are rotated ellipsoids

> =UAUT
where A is diagonal and U is a rotation matrix

3 is positive definite = entries in A are positive

Transformations of Gaussian variables

e Linear transformations of Gaussian RVs are Gaussian
X ~ N(p,, )
Y=AX+b
Y ~ N(Ap, +b, AZAT)

e Sums of Gaussian RVs are Gaussian
Z=X+4+Y
E[Z] = E[X] + E[Y]
var[Z] = var[X] + var[Y] + 2covar[XY]
if X and Y are independent var[Z] = var[X] + var[Y]



Properties of the Gaussian distribution

Gaussian has relatively simple analytical properties

e Central limit theorem. Sum (or mean) of M independent random variables is distributed
normally as M — oo (subject to a few general conditions)

e Diagonalization of covariance matrix =—=- rotated variables are independent

All marginal and conditional densities of a Gaussian are Gaussian

The Gaussian is the distribution that maximizes the entropy H = — [ p(x) log p(x)dx
for fixed mean and covariance

e Model
X ~ N(pz,vs)
Y = py + wy(X — p) + Ny
Z = p: +w(X — pz) + N
noise Ny ~ N(0,v)"), N, ~ N(0,v}), independent

e (X,Y, Z) is jointly Gaussian; can do inference for X givenY = yand Z = 2

Graphical Gaussian Models
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e Let X denote pulse rate

Example:

e Let Y denote measurement taken by machine 1, and Z denote measurement taken by
machine 2

As before
P(z,y,2) = P(z)P(y|lz)P(z|z)

Show that
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Inference in Gaussian models

e Partition variables into two groups, X1 and X»
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e For proof see §13.4 of Jordan (not examinable)

e Formation of joint Gaussian is analogous to formation of joint probability table for
discrete RVs. Propagation schemes are also possible for Gaussian RVs

Hybrid (discrete + continuous) networks

e Could discretize continuous variables, but this is ugly, and gives large
CPTs

e Better to use parametric families, e.g. Gaussian

e Works easily when continuous nodes are children of discrete nodes; we
then obtain a conditional Gaussian model



