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Ezercises for the tutorials: 1(a-d).

The other exercises are for self-study and exam preparation. All material is examinable unless
otherwise mentioned.

Exercise 1. EM algorithm for mixture models

Mixture models are statistical models of the form
K
p(x;0) = mipk(x; 0) (1)
k=1

where each py(x; 0y) is itself a statistical model parameterised by 6 and the 7, > 0 are mixture
weights that sum to one. The parameters @ of the mixture model consist of the parameters 0y,
of each mixture component and the mixture weights my, i.e. @ = (64,...,0k,71,...,7g). An
example is a mixture of Gaussians where each pg(x; 0}) is a Gaussian with parameters given by
the mean vector ;. and a covariance matrix .

The mixture model in (1) can be considered to be the marginal distribution of a latent variable
model p(x, h; @) where h is an unobserved variable that takes on values 1,..., K and p(h = k) =
7. Defining p(x|h = k;0) = p(x; 6y), the latent variable model corresponding to (1) thus is

p(x,h = k;0) = p(x|h = k; 0)p(h = k) = mppr(x; Op). (2)

In particular note that marginalising out h gives p(x; @) in (1).

(a) Verify that the latent variable model in (2) can be written as

K

p(x,h;0) = [ [mepw(x; 0,)" "= (3)
k=1

where h takes valuesin 1,..., K.
(b) Since the mixture model in (1) can be seen as the marginal of a latent-variable model, we
can use the expectation maximisation (EM) algorithm to estimate the parameters 6.

For a general model p(D,h; @) where D are the observed data and h the correspond-
ing unobserved variables, the EM algorithm iterates between computing the expected
complete-data log-likelihood J!(@) and maximising it with respect to 6:

E-step at iteration 1: .J!(9) = E,mip;et) log p(D, h; 0)] (4)
M-step at iteration I: 07! = argmax J!(0) (5)
0

Here 6' is the value of 0 in the I-th iteration. When solving the optimisation problem, we
also need to take into account constraints on the parameters, e.g. that the 7 correspond
to a pmf.

Assume that the data D consists of n iid data points x;, that each x; has associated with
it a scalar unobserved variable h;, and that the tuples (x;, h;) are all iid. What is J'(8)
under these additional assumptions?
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(c) Show that for the latent variable model in (3), J!(0) equals

(f)

n K
JH(0) = > wiy loglmipr(xi: 64)], (6)
i=1 k=1
o Pk (X3 0))
D k1 TPk (X5 0},
Note that the wfk are defined in terms of the parameters 77}€ and 92 from iteration [. They

are equal to the conditional probabilities p(h = k|x;; 8'), i.e. the probability that x; has
been sampled from component py(x;; 02)

(7)

Assume that the different mixture components pg(x;0x),k = 1,..., K do not share any
parameters. Show that the updated parameter values 05:1 are given by weighted maximum
likelihood estimates.

Show that maximising J!(@) with respect to the mixture weights 7 gives the update rule

1 n
l E l
7Tk+l = E wik (8)
=1

Summarise the EM-algorithm to learn the parameters 0 of the mixture model in (1) from
iid data x1,...,Xy.

Exercise 2. EM algorithm for mixture of Gaussians

We here use the results from Exercise 1 to derive the EM update rules for a mixture of Gaussians.
This is a mixture model where each mixture component is a Gaussian distribution, i.e.

K
p(x;0) = > N (%, Bie). (9)

=1

We consider the case where each pi and X, can be individually changed (no tying of parameters).
The overall parameters of the model are given by the py, ¥, and the mixture weights 7 > 0,
k=1,... K. As in the case of general mixture models, the mixture weights sum to one.

(a)

(b)

Determine the maximum likelihood estimates for a multivariate Gaussian N (x;u, %) for
iid data D = (x1,...,%X,) when each data point x; has a weight w;. The weights are
non-negative but do not necessarily sum to one.

Use the results from Exercise 1 to derive the EM update rules for the parameters of the
Gaussian mixture model.
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