Exercises for the tutorials: 1(a-d).

The other exercises are for self-study and exam preparation. All material is examinable unless otherwise mentioned.

Exercise 1. EM algorithm for mixture models

Mixture models are statistical models of the form

$$p(\mathbf{x}; \boldsymbol{\theta}) = \sum_{k=1}^{K} \pi_k p_k(\mathbf{x}; \boldsymbol{\theta}_k)$$
(1)

where each $p_k(\mathbf{x}; \boldsymbol{\theta}_k)$ is itself a statistical model parameterised by $\boldsymbol{\theta}_k$ and the $\pi_k \geq 0$ are mixture weights that sum to one. The parameters $\boldsymbol{\theta}$ of the mixture model consist of the parameters $\boldsymbol{\theta}_k$ of each mixture component and the mixture weights π_k , i.e. $\boldsymbol{\theta} = (\boldsymbol{\theta}_1, \dots, \boldsymbol{\theta}_K, \pi_1, \dots, \pi_K)$. An example is a mixture of Gaussians where each $p_k(\mathbf{x}; \boldsymbol{\theta}_k)$ is a Gaussian with parameters given by the mean vector $\boldsymbol{\mu}_k$ and a covariance matrix $\boldsymbol{\Sigma}_k$.

The mixture model in (1) can be considered to be the marginal distribution of a latent variable model $p(\mathbf{x}, h; \boldsymbol{\theta})$ where h is an unobserved variable that takes on values $1, \ldots, K$ and $p(h = k) = \pi_k$. Defining $p(\mathbf{x}|h = k; \boldsymbol{\theta}) = p_k(\mathbf{x}; \boldsymbol{\theta}_k)$, the latent variable model corresponding to (1) thus is

$$p(\mathbf{x}, h = k; \boldsymbol{\theta}) = p(\mathbf{x}|h = k; \boldsymbol{\theta})p(h = k) = \pi_k p_k(\mathbf{x}; \boldsymbol{\theta}_k).$$
(2)

In particular note that marginalising out h gives $p(\mathbf{x}; \boldsymbol{\theta})$ in (1).

(a) Verify that the latent variable model in (2) can be written as

$$p(\mathbf{x}, h; \boldsymbol{\theta}) = \prod_{k=1}^{K} \left[\pi_k p_k(\mathbf{x}; \boldsymbol{\theta}_k) \right]^{\mathbb{1}(h=k)}$$
(3)

where h takes values in $1, \ldots, K$.

(b) Since the mixture model in (1) can be seen as the marginal of a latent-variable model, we can use the expectation maximisation (EM) algorithm to estimate the parameters $\boldsymbol{\theta}$.

For a general model $p(\mathcal{D}, \mathbf{h}; \boldsymbol{\theta})$ where \mathcal{D} are the observed data and \mathbf{h} the corresponding unobserved variables, the EM algorithm iterates between computing the expected complete-data log-likelihood $J^{l}(\boldsymbol{\theta})$ and maximising it with respect to $\boldsymbol{\theta}$:

E-step at iteration l:
$$J^{l}(\boldsymbol{\theta}) = \mathbb{E}_{p(\mathbf{h}|\mathcal{D};\boldsymbol{\theta}^{l})}[\log p(\mathcal{D},\mathbf{h};\boldsymbol{\theta})]$$
 (4)

M-step at iteration l: $\theta^{l+1} = \underset{\theta}{\operatorname{argmax}} J^l(\theta)$ (5)

Here θ^l is the value of θ in the *l*-th iteration. When solving the optimisation problem, we also need to take into account constraints on the parameters, e.g. that the π_k correspond to a pmf.

Assume that the data \mathcal{D} consists of n iid data points \mathbf{x}_i , that each \mathbf{x}_i has associated with it a scalar unobserved variable h_i , and that the tuples (\mathbf{x}_i, h_i) are all iid. What is $J^l(\boldsymbol{\theta})$ under these additional assumptions?

(c) Show that for the latent variable model in (3), $J^{l}(\boldsymbol{\theta})$ equals

$$J^{l}(\boldsymbol{\theta}) = \sum_{i=1}^{n} \sum_{k=1}^{K} w_{ik}^{l} \log[\pi_{k} p_{k}(\mathbf{x}_{i}; \boldsymbol{\theta}_{k})], \qquad (6)$$

$$w_{ik}^{l} = \frac{\pi_{k}^{l} p_{k}(\mathbf{x}_{i}; \boldsymbol{\theta}_{k}^{l})}{\sum_{k=1}^{K} \pi_{k}^{l} p_{k}(\mathbf{x}_{i}; \boldsymbol{\theta}_{k}^{l})}$$
(7)

Note that the w_{ik}^l are defined in terms of the parameters π_k^l and θ_k^l from iteration l. They are equal to the conditional probabilities $p(h = k | \mathbf{x}_i; \boldsymbol{\theta}^l)$, i.e. the probability that \mathbf{x}_i has been sampled from component $p_k(\mathbf{x}_i; \boldsymbol{\theta}_k^l)$.

- (d) Assume that the different mixture components $p_k(\mathbf{x}; \boldsymbol{\theta}_k), k = 1, \dots, K$ do not share any parameters. Show that the updated parameter values $\boldsymbol{\theta}_k^{l+1}$ are given by weighted maximum likelihood estimates.
- (e) Show that maximising $J^{l}(\boldsymbol{\theta})$ with respect to the mixture weights π_{k} gives the update rule

$$\pi_k^{l+1} = \frac{1}{n} \sum_{i=1}^n w_{ik}^l \tag{8}$$

(f) Summarise the EM-algorithm to learn the parameters $\boldsymbol{\theta}$ of the mixture model in (1) from iid data $\mathbf{x}_1, \ldots, \mathbf{x}_n$.

Exercise 2. EM algorithm for mixture of Gaussians

We here use the results from Exercise 1 to derive the EM update rules for a mixture of Gaussians. This is a mixture model where each mixture component is a Gaussian distribution, i.e.

$$p(\mathbf{x}; \boldsymbol{\theta}) = \sum_{i=1}^{K} \pi_k \mathcal{N}(\mathbf{x}; \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k).$$
(9)

We consider the case where each $\boldsymbol{\mu}_k$ and $\boldsymbol{\Sigma}_k$ can be individually changed (no tying of parameters). The overall parameters of the model are given by the $\boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k$ and the mixture weights $\pi_k \geq 0$, $k = 1, \ldots K$. As in the case of general mixture models, the mixture weights sum to one.

- (a) Determine the maximum likelihood estimates for a multivariate Gaussian $\mathcal{N}(\mathbf{x}; \boldsymbol{\mu}, \boldsymbol{\Sigma})$ for iid data $\mathcal{D} = (\mathbf{x}_1, \dots, \mathbf{x}_n)$ when each data point \mathbf{x}_i has a weight w_i . The weights are non-negative but do not necessarily sum to one.
- (b) Use the results from Exercise 1 to derive the EM update rules for the parameters of the Gaussian mixture model.