
Probabilistic Modelling and Reasoning

Solutions 8
Spring 2023

Michael Gutmann

Exercises for the tutorials: 1(a-d).

The other exercises are for self-study and exam preparation. All material is examinable unless otherwise
mentioned.

Exercise 1. EM algorithm for mixture models

Mixture models are statistical models of the form

p(x;θ) =

K∑
k=1

πkpk(x;θk) (1)

where each pk(x;θk) is itself a statistical model parameterised by θk and the πk ≥ 0 are mixture weights
that sum to one. The parameters θ of the mixture model consist of the parameters θk of each mixture
component and the mixture weights πk, i.e. θ = (θ1, . . . ,θK , π1, . . . , πK). An example is a mixture
of Gaussians where each pk(x;θk) is a Gaussian with parameters given by the mean vector µµµk and a
covariance matrix ΣΣΣk.

The mixture model in (1) can be considered to be the marginal distribution of a latent variable model
p(x, h;θ) where h is an unobserved variable that takes on values 1, . . . ,K and p(h = k) = πk. Defining
p(x|h = k;θ) = pk(x;θk), the latent variable model corresponding to (1) thus is

p(x, h = k;θ) = p(x|h = k;θ)p(h = k) = πkpk(x;θk). (2)

In particular note that marginalising out h gives p(x;θ) in (1).

(a) Verify that the latent variable model in (2) can be written as

p(x, h;θ) =

K∏
k=1

[πkpk(x;θk)]
1(h=k)

(3)

where h takes values in 1, . . . ,K.

Solution. Since 1(h = k) is one if h = k and zero otherwise, we have

p(x, h = j;θ) =
K∏
k=1

[πkpk(x;θk)]
1(j=k) = πjpj(x;θj) (S.1)

for any j ∈ {1, . . . ,K}, which matches (2).

(b) Since the mixture model in (1) can be seen as the marginal of a latent-variable model, we can use
the expectation maximisation (EM) algorithm to estimate the parameters θ.

For a general model p(D,h;θ) where D are the observed data and h the corresponding unobserved
variables, the EM algorithm iterates between computing the expected complete-data log-likelihood
J l(θ) and maximising it with respect to θ:

E-step at iteration l: J l(θ) = Ep(h|D;θl)[log p(D,h;θ)] (4)

M-step at iteration l: θl+1 = argmax
θ

J l(θ) (5)

Here θl is the value of θ in the l-th iteration. When solving the optimisation problem, we also need
to take into account constraints on the parameters, e.g. that the πk correspond to a pmf.

Assume that the data D consists of n iid data points xi, that each xi has associated with it a scalar
unobserved variable hi, and that the tuples (xi, hi) are all iid. What is J l(θ) under these additional
assumptions?
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Solution. Since the (xi, hi) are iid, we have that p(D,h;θ) =
∏n
i=1 p(xi, hi;θ). Hence

J lθ) = Ep(h|D;θl)[log p(D,h;θ)] (S.2)

= Ep(h|D;θl)

[
n∑
i=1

log p(xi, hi;θ)

]
(S.3)

=
n∑
i=1

Ep(h|D;θl)[log p(xi, hi;θ)] (S.4)

=
n∑
i=1

Ep(hi|D;θl)[log p(xi, hi;θ)] (S.5)

=

n∑
i=1

Ep(hi|xi;θ
l)[log p(xi, hi;θ)] (S.6)

where in the second last step, we have used that each log p(xi, hi;θ)] only involves one
latent variable hi so that we only need to take the expectation over p(hi|D;θl), and in the
last step, we have used that hi ⊥⊥ xj , for j 6= i.

(c) Show that for the latent variable model in (3), J l(θ) equals

J l(θ) =

n∑
i=1

K∑
k=1

wl
ik log[πkpk(xi;θk)], (6)

wl
ik =

πl
kpk(xi;θ

l
k)∑K

k=1 π
l
kpk(xi;θ

l
k)

(7)

Note that the wl
ik are defined in terms of the parameters πl

k and θl
k from iteration l. They are equal

to the conditional probabilities p(h = k|xi;θ
l), i.e. the probability that xi has been sampled from

component pk(xi;θ
l
k).

Solution. We consider a single term Ep(h|x;θl)[log p(x, h;θ)] in (S.6).

Given the form of the model in (3), we have that

log p(x, h;θ) =
K∑
k=1

1(h = k) log[πkpk(x;θk)] (S.7)

and hence

Ep(h|x;θl)[log p(x, h;θ)] = Ep(h|x;θl)

[
K∑
k=1

1(h = k) log[πkpk(x;θk)]

]
(S.8)

=
K∑
k=1

Ep(h|x;θl) [1(h = k)] log[πkpk(x;θk)] (S.9)

=
K∑
k=1

p(h = k|x;θl) log[πkpk(x;θk)] (S.10)

where we have used that the expectation over an indicator event equals the probability for
the event to happen, i.e. Ep(h|x;θl) [1(h = k)] = p(h = k|x;θl).
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The probability p(h = k|x;θl) can be determined via the product (Bayes’) rule and Equa-
tions (2) and (1)

p(h = k|x;θl) =
p(x, h = k,θl)

p(x;θl)
(S.11)

=
πlkpk(x;θlk)∑K
k=1 π

l
kpk(x;θlk)

(S.12)

Note that the superscript l indicates that the πlk are the mixture weights and the θlk the
model parameters from iteration l.

The objective J l(θ) sums over n terms Ep(h|xi;θ
l)[log p(xi, h;θ)]. Let us denote p(h =

k|xi;θl) from (S.12) by wlik so that

Ep(h|xi;θ
l)[log p(xi, h;θ)] =

K∑
k=1

wlik log[πkpk(x;θk)] (S.13)

and

J l(θ) =

n∑
i=1

K∑
k=1

wlik log[πkpk(xi;θk)]. (S.14)

The objective J l(θ) takes the form of a weighted log-likelihood. In more detail, since∑
k w

l
ik = 1 for all data points xi (and wlik ≥ 0),

∑K
k=1w

l
ik log[πkpk(xi;θk)] is a convex

combination. This means that the different components of the mixture model compete
with each other: larger weights for some components mean smaller weights for others. In
the extreme case, some components may contribute in a negligible way to the i-th term of
the log-likelihood.

The weights wlik are sometimes, in particular for mixture of Gaussians, called “soft-
assignments” because they specify to which extent a data points xi “belongs” to a mixture
component pk. Alternatively, we can interpret the wlik to be the “responsibilities” of each
mixture component pk for a datapoint xi.

In some cases, e.g. for computational reasons, we may determine which of the K weights
wli1, . . . , w

l
iK is the largest and then set it to one while setting the other weights to zero.

This corresponds to “hard-assignments” (and “hard EM”) where a data point xi is exclu-
sively assigned to a single mixture component pk.

(d) Assume that the different mixture components pk(x;θk), k = 1, . . . ,K do not share any parameters.
Show that the updated parameter values θl+1

k are given by weighted maximum likelihood estimates.

Solution. We interchange the order of the summations in (6) so that

J l(θ) =

K∑
k=1

n∑
i=1

wlik log[πkpk(xi;θk)] (S.15)

=
K∑
k=1

n∑
i=1

wlik log πk +
K∑
k=1

n∑
i=1

wlik log pk(xi;θk)︸ ︷︷ ︸
`lk(θk)

(S.16)
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When we update the parameters θk of the mixture components, the first term is a constant.
The second term is a sum over weighted log-likelihoods `lk(θk), one for each mixture
component. If the mixture components do not share parameters, we thus have

θl+1
k = argmax

θk

J l(θ) = argmax
θk

`lk(θk) (S.17)

This means that we can compute θl+1
k as if we performed maximum likelihood estimation

for the model pk(x;θk), expect that the data points xi are weighted by the wlik.

(e) Show that maximising J l(θ) with respect to the mixture weights πk gives the update rule

πl+1
k =

1

n

n∑
i=1

wl
ik (8)

Solution. We start with (6) and drop additive terms that do not depend on the πk.
Since

J l(θ) =

n∑
i=1

K∑
k=1

wlik log πk + terms not depending on the πk (S.18)

we can focus on the objective

J lπ(π1, . . . , πK) =
n∑
i=1

K∑
k=1

wlik log πk (S.19)

=

K∑
k=1

(
n∑
i=1

wlik

)
︸ ︷︷ ︸

ωl
k

log πk (S.20)

=
K∑
k=1

ωlk log πk. (S.21)

Taking into account that the πk = p(h = k) define a pmf, the optimisation problem to
solve is

maximise

K∑
k=1

ωlk log πk (S.22)

subject to πk ≥ 0 (S.23)

K∑
k=1

πk = 1 (S.24)

The constrained optimisation problem could be solved via Lagrange multipliers. But we
here take another approach and solve the optimisation problem by phrasing it in terms of
a KL-divergence minimisation problem.

First, note that the πk that maximise J lπ(π1, . . . , πK) will also maximise the re-scaled
objective

1∑K
k=1 ω

l
k

J lπ(π1, . . . , πK) =
1∑K

k=1 ω
l
k

K∑
k=1

ωlk log πk (S.25)

=
K∑
k=1

qlk log πk (S.26)
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where we introduced

qlk =
ωlk∑K
k=1 ω

l
k

. (S.27)

The qlk are non-negative and sum to one. Hence, we can consider them to define a pmf.

Second, note that the πk that maximise J lπ(π1, . . . , πK) will also maximise

K∑
k=1

qlk log πk −
K∑
k=1

qlk log qlk =
K∑
k=1

qlk log
πk

qlk
(S.28)

= −
K∑
k=1

qlk log
qlk
πk

(S.29)

= −KL(ql, π) (S.30)

since adding constants does not change the solution. Hence, the optimal πk are given by
the pmf π that minimises the KL-divergence KL(ql, π). This means that the optimal πk
are

πk = qlk =
ωlk∑K
k=1 ω

l
k

=

∑n
i=1w

l
ik∑K

k=1

∑n
i=1w

l
ik

. (S.31)

The denominator can be simplified by noting that, with (7),
∑K

k=1w
l
ik = 1 so that

K∑
k=1

n∑
i=1

wlik =

n∑
i=1

K∑
k=1

wlik = n (S.32)

The requested update rule thus is

πl+1
k =

1

n

n∑
i=1

wlik (S.33)

The update rule does not depend directly on the statistical model pk(x;θk) that we may
choose for the mixture components. Their influence occurs indirectly via the wlik.

(f) Summarise the EM-algorithm to learn the parameters θ of the mixture model in (1) from iid data
x1, . . . ,xn.

Solution. We collect and summarise the results from the previous questions:

• E-step at iteration l: Compute the posterior probabilities (soft assignments)

wlik =
πlkpk(xi;θ

l
k)∑K

k=1 π
l
kpk(xi;θ

l
k)

(S.34)

for all data points xi and and mixture components k. Then formulate the objective
function J l(θ)

J l(θ) =
n∑
i=1

K∑
k=1

wlik log[πkpk(xi;θk)] (S.35)
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• M-step at iteration l: Compute the new mixture weights

πl+1
k =

1

n

n∑
i=1

wlik (S.36)

To compute the new mixture parameters θl+1
k , maximise J l(θ) if some parameters

are shared or tied. If the pk(x;θk) do not share parameters, the new parameters θl+1
k

are obtained by maximising a weighted log-likelihood for each mixture component
separately:

θl+1
k = argmax

θk

n∑
i=1

wlik log pk(xi;θk) (S.37)

for k = 1, . . . ,K.

Exercise 2. EM algorithm for mixture of Gaussians

We here use the results from Exercise 1 to derive the EM update rules for a mixture of Gaussians. This
is a mixture model where each mixture component is a Gaussian distribution, i.e.

p(x;θ) =

K∑
i=1

πkN (x;µµµk,ΣΣΣk). (9)

We consider the case where each µµµk and ΣΣΣk can be individually changed (no tying of parameters). The
overall parameters of the model are given by the µµµk,ΣΣΣk and the mixture weights πk ≥ 0, k = 1, . . .K. As
in the case of general mixture models, the mixture weights sum to one.

(a) Determine the maximum likelihood estimates for a multivariate Gaussian N (x;µµµ,ΣΣΣ) for iid data
D = (x1, . . . ,xn) when each data point xi has a weight wi. The weights are non-negative but do
not necessarily sum to one.

Solution. The weighted log-likelihood is

`(µµµ,ΣΣΣ) =
n∑
i=1

wi logN (xi;µµµ,ΣΣΣ) (S.38)

=
n∑
i=1

wi log | det 2πΣΣΣ|−1/2 − 1

2

n∑
i=1

wi(xi −µµµ)>ΣΣΣ−1(xi −µµµ) (S.39)

Introducing the normalised weights Wi = wi/
∑n

i=1wi, we have

1∑n
i=1wi

`(µµµ,ΣΣΣ) = log | det 2πΣΣΣ|−1/2 − 1

2

n∑
i=1

Wi(xi −µµµ)>ΣΣΣ−1(xi −µµµ) (S.40)

Let us write out the quadratic term

(xi −µµµ)TΣΣΣ−1(xi −µµµ) = x>i ΣΣΣ−1xi − 2x>i ΣΣΣ−1µµµ+µµµ>ΣΣΣ−1µµµ (S.41)
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Hence
n∑
i=1

Wi(xi −µµµ)TΣΣΣ−1(xi −µµµ) =
n∑
i=1

Wix
>
i ΣΣΣ−1xi − 2

n∑
i=1

Wix
>
i ΣΣΣ−1µµµ+

n∑
i=1

Wi︸ ︷︷ ︸
=1

µµµ>ΣΣΣ−1µµµ

(S.42)

= tr

[(
n∑
i=1

Wixix
>
i

)
ΣΣΣ−1

]
− 2

(
n∑
i=1

Wixi

)>
ΣΣΣ−1µµµ+µµµ>ΣΣΣ−1µµµ

(S.43)

= tr
(
RΣΣΣ−1

)
− 2b>ΣΣΣ−1µµµ+µµµ>ΣΣΣ−1µµµ (S.44)

where R =
∑n

i=1Wixix
>
i and b =

∑n
i=1Wixi. Hence

1∑n
i=1wi

`(µµµ,ΣΣΣ) = log | det 2πΣΣΣ|−1/2 − 1

2
tr
(
RΣΣΣ−1

)
+ b>ΣΣΣ−1µµµ− 1

2
µµµ>ΣΣΣ−1µµµ (S.45)

This has exactly the same form as the unweighted likelihood function, just the sufficient
statistics R and b are computed using the weights. Hence, the maximum likelihood
estimates, when expressed in terms of R and b remain the same as in the unweighted
case:

µ̂µµ = b =
n∑
i=1

Wixi (S.46)

Σ̂ΣΣ = R− bb> =
n∑
i=1

Wixix
>
i − bb> (S.47)

Moreover, since

n∑
i=1

Wi(xi − b)(xi − b)> =

n∑
i=1

Wixix
>
i −

n∑
i=1

Wixi︸ ︷︷ ︸
b

b> − b

n∑
i=1

Wix
>
i︸ ︷︷ ︸

b>

+bb> (S.48)

= R− bb> − bb> + bb> (S.49)

= R− bb> (S.50)

we find that the weighted maximum likelihood estimates are the weighted average and
weighted covariance matrix:

µ̂µµ =

n∑
i=1

Wixi Σ̂ΣΣ =

n∑
i=1

Wi(xi − µ̂µµ)(xi − µ̂µµ)> Wi =
wi∑n
i=1wi

(S.51)

(b) Use the results from Exercise 1 to derive the EM update rules for the parameters of the Gaussian
mixture model.

Solution. From the solution to Exercise 1(f) and the derived weighted MLE solutions,
we find:

• E-step at iteration l: Compute the posterior probabilities (soft assignments)

wlik =
πlkN (xi;µµµ

l
k,ΣΣΣ

l
k)∑K

k=1 π
l
kN (xi;µµµlk,ΣΣΣ

l
k)

(S.52)

for all data points xi and and mixture components k.
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• M-step at iteration l:

– Determine the weighted MLEs

µµµl+1
k =

n∑
i=1

W l
ikxi ΣΣΣl+1

k =

n∑
i=1

W l
ik(xi −µµµl+1

k )(xi −µµµl+1
k )> (S.53)

where W l
ik = wlik/(

∑n
i=1w

l
ik).

– Compute the new mixture weights

πl+1
k =

1

n

n∑
i=1

wlik (S.54)
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