

the university of edinburgh

These notes are intended to give a summary of relevant concepts from the lectures which are helpful to complete the exercises. It is not intended to cover the lectures thoroughly. Learning this content is not a replacement for working through the lecture material and the exercises.

EM algorithm — The expectation maximisation (EM) algorithm can be used to learn the parameters $\boldsymbol{\theta}$ of a statistical model $p(\mathbf{v}, \mathbf{h}; \boldsymbol{\theta})$ with latent (unobserved) variables \mathbf{h} and visible (observed) variables \mathbf{v} for which we have data \mathcal{D} . It updates the parameters $\boldsymbol{\theta}$ by iterating between the expectation (E) and the maximisation (M) step:

E-step: compute $J(\boldsymbol{\theta}) = \mathbb{E}_{p(\mathbf{h}|\mathcal{D};\boldsymbol{\theta}_{\text{old}})}[\log p(\mathcal{D}, \mathbf{h}; \boldsymbol{\theta})]$ M-step: $\boldsymbol{\theta}_{\text{new}} \leftarrow \operatorname*{argmax}_{\boldsymbol{\theta}} J(\boldsymbol{\theta})$ (1)

The update rule produces a sequence of parameters for which the log-likelihood is guaranteed to never decrease, i.e. $\ell(\boldsymbol{\theta}_{new}) \geq \ell(\boldsymbol{\theta}_{old})$.