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Exercises for the tutorials: 2 and 4.

The other exercises are for self-study and exam preparation. All material is examinable unless
otherwise mentioned.

Exercise 1. Mean field variational inference I

Let Lx(q) be the evidence lower bound for the marginal p(x) of a joint pdf/pmf p(x,y),

Lx(q) = Eq(y|x)

[
log

p(x,y)

q(y|x)

]
. (1)

Mean field variational inference assumes that the variational distribution q(y|x) fully factorises,
i.e.

q(y|x) =

d∏
i=1

qi(yi|x), (2)

when y is d-dimensional. An approach to learning the qi for each dimension is to update one at
a time while keeping the others fixed. We here derive the corresponding update equations.

(a) Show that the evidence lower bound Lx(q) can be written as

Lx(q) = Eq1(y1|x)Eq(y\1|x) [log p(x,y)]−
d∑

i=1

Eqi(yi|x) [log qi(yi|x)] (3)

where q(y\1|x) =
∏d

i=2 qi(yi|x) is the variational distribution without q1(y1|x).

(b) Assume that we would like to update q1(y1|x) and that the variational marginals of the
other dimensions are kept fixed. Show that

argmax
q1(y1|x)

Lx(q) = argmin
q1(y1|x)

KL(q1(y1|x)||p̄(y1|x)) (4)

with
log p̄(y1|x) = Eq(y\1|x) [log p(x,y)] + const, (5)

where const refers to terms not depending on y1. That is,

p̄(y1|x) =
1

Z
exp

[
Eq(y\1|x) [log p(x,y)]

]
, (6)

where Z is the normalising constant. Note that variables y2, . . . , yd are marginalised out
due to the expectation with respect to q(y\1|x).

(c) Conclude that given qi(yi|x), i = 2, . . . , d, the optimal q1(y1|x) equals p̄(y1|x).

This then leads to an iterative updating scheme where we cycle through the different dimen-
sions, each time updating the corresponding marginal variational distribution according
to:

qi(yi|x) = p̄(yi|x), p̄(yi|x) =
1

Z
exp

[
Eq(y\i|x) [log p(x,y)]

]
(7)

where q(y\i|x) =
∏

j 6=i q(yj |x) is the product of all marginals without marginal qi(yi|x).
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Exercise 2. Mean field variational inference II

Assume random variables y1, y2, x are generated according to the following process

y1 ∼ N (y1; 0, 1) y2 ∼ N (y2; 0, 1) (8)

n ∼ N (n; 0, 1) x = y1 + y2 + n (9)

where y1, y2, n are statistically independent.

(a) y1, y2, x are jointly Gaussian. Determine their mean and their covariance matrix.

(b) The conditional p(y1, y2|x) is Gaussian with mean m and covariance C,

m =
x

3

(
1
1

)
C =

1

3

(
2 −1
−1 2

)
(10)

Since x is the sum of three random variables that have the same distribution, it makes
intuitive sense that the mean assigns 1/3 of the observed value of x to y1 and y2. Moreover,
y1 and y2 are negatively correlated since an increase in y1 must be compensated with a
decrease in y2.

Let us now approximate the posterior p(y1, y2|x) with mean field variational inference.
Determine the optimal variational distribution using the method and results from Exercise
1. You may use that

p(y1, y2, x) = N ((y1, y2, x);0,ΣΣΣ) ΣΣΣ =

1 0 1
0 1 1
1 1 3

 ΣΣΣ−1 =

 2 1 −1
1 2 −1
−1 −1 1

 (11)

Exercise 3. Variational posterior approximation I

We have seen that maximising the evidence lower bound (ELBO) with respect to the variational
distribution q minimises the Kullback-Leibler divergence to the true posterior p. We here assume
that q and p are probability density functions so that the Kullback-Leibler divergence between
them is defined as

KL(q||p) =

∫
q(x) log

q(x)

p(x)
dx = Eq

[
log

q(x)

p(x)

]
. (12)

(a) You can here assume that x is one-dimensional so that p and q are univariate densities.
Consider the case where p is a bimodal density but the variational densities q are unimodal.
Sketch a figure that shows p and a variational distribution q that has been learned by
minimising KL(q||p). Explain qualitatively why the sketched q minimises KL(q||p).

(b) Assume that the true posterior p(x) = p(x1, x2) factorises into two Gaussians of mean zero
and variances σ21 and σ22,

p(x1, x2) =
1√

2πσ21
exp

[
− x21

2σ21

]
1√

2πσ22
exp

[
− x22

2σ22

]
. (13)

Assume further that the variational density q(x1, x2;λ
2) is parametrised as

q(x1, x2;λ
2) =

1

2πλ2
exp

[
−x

2
1 + x22
2λ2

]
(14)

where λ2 is the variational parameter that is learned by minimising KL(q||p). If σ22 is much
larger than σ21, do you expect λ2 to be closer to σ22 or to σ21? Provide an explanation.
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Exercise 4. Variational posterior approximation II

We have seen that maximising the evidence lower bound (ELBO) with respect to the variational
distribution minimises the Kullback-Leibler divergence to the true posterior. We here investigate
the nature of the approximation if the family of variational distributions does not include the
true posterior.

(a) Assume that the true posterior for x = (x1, x2) is given by

p(x) = N (x1;σ
2
1)N (x2;σ

2
2) (15)

and that our variational distribution q(x;λ2) is

q(x;λ2) = N (x1;λ
2)N (x2;λ

2), (16)

where λ > 0 is the variational parameter. Provide an equation for

J(λ) = KL(q(x;λ2)||p(x)), (17)

where you can omit additive terms that do not depend on λ.

(b) Determine the value of λ that minimises J(λ) = KL(q(x;λ2)||p(x)). Interpret the result
and relate it to properties of the Kullback-Leibler divergence.
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