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Exercise 1. Mean field variational inference I

Let Lx(q) be the evidence lower bound for the marginal p(x) of a joint pdf/pmf p(x,y),

Lx(q) = Eq(y|x)

[
log

p(x,y)

q(y|x)

]
. (1)

Mean field variational inference assumes that the variational distribution q(y|x) fully factorises, i.e.

q(y|x) =

d∏
i=1

qi(yi|x), (2)

when y is d-dimensional. An approach to learning the qi for each dimension is to update one at a time
while keeping the others fixed. We here derive the corresponding update equations.

(a) Show that the evidence lower bound Lx(q) can be written as

Lx(q) = Eq1(y1|x)Eq(y\1|x) [log p(x,y)]−
d∑

i=1

Eqi(yi|x) [log qi(yi|x)] (3)

where q(y\1|x) =
∏d

i=2 qi(yi|x) is the variational distribution without q1(y1|x).

Solution. This follows directly from the definition of the ELBO and the assumed fac-
torisation of q(y|x). We have

Lx(q) = Eq(y|x) log p(x,y)− Eq(y|x) log q(y|x) (S.1)

= E∏d
i=1 qi(yi|x)

log p(x,y)− E∏d
i=1 qi(yi|x)

d∑
i=1

log qi(yi|x) (S.2)

= E∏d
i=1 qi(yi|x)

log p(x,y)−
d∑

i=1

Eqi(yi|x) log qi(yi|x) (S.3)

= Eq1(y1|x)E∏d
i=2 qi(yi|x)

log p(x,y)−
d∑

i=1

Eqi(yi|x) log qi(yi|x) (S.4)

= Eq1(y1|x)Eq(y\1|x) [log p(x,y)]−
d∑

i=1

Eqi(yi|x) [log qi(yi|x)] (S.5)
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We have here used the linearity of expectation. In case of continuous random variables,
for instance, we have

E∏d
i=1 qi(yi|x)

d∑
i=1

log qi(yi|x) =

∫
q1(y1|x) · . . . · qd(yd|x)

d∑
i=1

log qi(yi|x)dy1 . . . dyd (S.6)

=
d∑

i=1

∫
q1(y1|x) · . . . · qd(yd|x) log qi(yi|x)dy1 . . . dyd (S.7)

=
d∑

i=1

∫
qi(yi|x) log qi(yi|x)dyi

∫ ∏
j 6=i

qj(yj |x)dyj︸ ︷︷ ︸
=1

(S.8)

=
d∑

i=1

Eqi(yi|x) log qi(yi|x) (S.9)

For discrete random variables, the integral is replaced with a sum and leads to the same
result.

(b) Assume that we would like to update q1(y1|x) and that the variational marginals of the other
dimensions are kept fixed. Show that

argmax
q1(y1|x)

Lx(q) = argmin
q1(y1|x)

KL(q1(y1|x)||p̄(y1|x)) (4)

with
log p̄(y1|x) = Eq(y\1|x) [log p(x,y)] + const, (5)

where const refers to terms not depending on y1. That is,

p̄(y1|x) =
1

Z
exp

[
Eq(y\1|x) [log p(x,y)]

]
, (6)

where Z is the normalising constant. Note that variables y2, . . . , yd are marginalised out due to the

expectation with respect to q(y\1|x).

Solution. Starting from

Lx(q) = Eq1(y1|x)Eq(y\1|x) [log p(x,y)]−
d∑

i=1

Eqi(yi|x) [log qi(yi|x)] (S.10)

we drop terms that do not depend on q1. We then obtain

J(q1) = Eq1(y1|x)Eq(y\1|x) [log p(x,y)]− Eq1(y1|x) [log q1(y1|x)] (S.11)

= Eq1(y1|x) log p̄(y1|x)− Eq1(y1|x) [log q1(y1|x)] + const (S.12)

= Eq1(y1|x)

[
log

p̄(y1|x)

q1(y1|x)

]
(S.13)

= −KL(q1(y1|x)||p̄(y1|x)) (S.14)

Hence
argmax
q1(y1|x)

Lx(q) = argmin
q1(y1|x)

KL(q1(y1|x)||p̄(y1|x)) (S.15)
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(c) Conclude that given qi(yi|x), i = 2, . . . , d, the optimal q1(y1|x) equals p̄(y1|x).

This then leads to an iterative updating scheme where we cycle through the different dimensions,
each time updating the corresponding marginal variational distribution according to:

qi(yi|x) = p̄(yi|x), p̄(yi|x) =
1

Z
exp

[
Eq(y\i|x) [log p(x,y)]

]
(7)

where q(y\i|x) =
∏

j 6=i q(yj |x) is the product of all marginals without marginal qi(yi|x).

Solution. This follows immediately from the fact that the KL divergence is minimised
when q1(y1|x) = p̄(y1|x). Side-note: The iterative update rule can be considered to be
coordinate ascent optimisation in function space, where each “coordinate” corresponds to
a qi(yi|x).

Exercise 2. Mean field variational inference II

Assume random variables y1, y2, x are generated according to the following process

y1 ∼ N (y1; 0, 1) y2 ∼ N (y2; 0, 1) (8)

n ∼ N (n; 0, 1) x = y1 + y2 + n (9)

where y1, y2, n are statistically independent.

(a) y1, y2, x are jointly Gaussian. Determine their mean and their covariance matrix.

Solution. The expected value of y1 and y2 is zero. By linearity of expectation, the
expected value of x is

E(x) = E(y1) + E(y2) + E(n) = 0 (S.16)

The variance of y1 and y2 is 1. Since y1, y2, n are statistically independent,

V(x) = V(y1) + V(y2) + V(n) = 1 + 1 + 1 = 3. (S.17)

The covariance between y1 and x is

cov(y1, x) = E((y1 − E(y1))(x− E(x))) = E(y1x) (S.18)

= E(y1(y1 + y2 + n)) = E(y21) + E(y1y2) + E(y1n) (S.19)

= 1 + E(y1)E(y2) + E(y1)E(n) (S.20)

= 1 + 0 + 0 (S.21)

where we have used that y1 and x have zero mean and the independence assumptions.

The covariance between y2 and x is computed in the same way and equals 1 too.

We thus obtain the covariance matrix ΣΣΣ,

ΣΣΣ =

1 0 1
0 1 1
1 1 3

 (S.22)
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(b) The conditional p(y1, y2|x) is Gaussian with mean m and covariance C,

m =
x

3

(
1
1

)
C =

1

3

(
2 −1
−1 2

)
(10)

Since x is the sum of three random variables that have the same distribution, it makes intuitive
sense that the mean assigns 1/3 of the observed value of x to y1 and y2. Moreover, y1 and y2 are
negatively correlated since an increase in y1 must be compensated with a decrease in y2.

Let us now approximate the posterior p(y1, y2|x) with mean field variational inference. Determine
the optimal variational distribution using the method and results from Exercise 1. You may use
that

p(y1, y2, x) = N ((y1, y2, x);0,ΣΣΣ) ΣΣΣ =

1 0 1
0 1 1
1 1 3

 ΣΣΣ−1 =

 2 1 −1
1 2 −1
−1 −1 1

 (11)

Solution. The mean field assumption means that the variational distribution is assumed
to factorise as

q(y1, y2|x) = q1(y1|x)q2(y2|x) (S.23)

From Exercise 1, the optimal q1(y1|x) and q2(y2|x) satisfy

q1(y1|x) = p̄(y1|x), p̄(y1|x) =
1

Z
exp

[
Eq2(y2|x) [log p(y1, y2, x)]

]
(S.24)

q2(y2|x) = p̄(y2|x), p̄(y2|x) =
1

Z
exp

[
Eq1(y1|x) [log p(y1, y2, x)]

]
(S.25)

Note that these are coupled equations: q2 features in the equation for q1 via p̄(y1|x), and q1
features in the equation for q2 via p̄(y2|x). But we have two equations for two unknowns,
which for the Gaussian joint model p(x, y1, y2) can be solved in closed form.

Given the provided equation for p(y1, y2, x), we have that

log p(y1, y2, x) = −1

2

y1y2
x

> 2 1 −1
1 2 −1
−1 −1 1

y1y2
x

+ const (S.26)

= −1

2

(
2y21 + 2y22 + x2 + 2y1y2 − 2y1x− 2y2x

)
+ const (S.27)

Let us start with the equation for p̄(y1|x). It is easier to work in the logarithmic domain,
where we obtain:

log p̄(y1|x) = Eq2(y2|x) [log p(y1, y2, x)] + const (S.28)

= −1

2
Eq2(y2|x)

[
2y21 + 2y22 + x2 + 2y1y2 − 2y1x− 2y2x

]
+ const (S.29)

= −1

2

(
2y21 + 2y1Eq2(y2|x)[y2]− 2y1x

)
+ const (S.30)

= −1

2

(
2y21 + 2y1m2 − 2y1x

)
+ const (S.31)

= −1

2

(
2y21 − 2y1(x−m2)

)
+ const (S.32)

where we have absorbed all terms not involving y1 into the constant. Moreover, we set
Eq2(y2|x)[y2] = m2.
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Note that an arbitrary Gaussian density N (y;m,σ2) with mean m and variance σ2 can be
written in the log-domain as

logN (y;m,σ2) = −1

2

(y −m)2

σ2
+ const (S.33)

= −1

2

(
y2

σ2
− 2y

m

σ2

)
+ const (S.34)

Comparison with (S.32) shows that p̄(y1|x), and hence q1(y1|x), is Gaussian with variance
and mean equal to

σ21 =
1

2
m1 =

1

2
(x−m2) (S.35)

Note that we have not made a Gaussianity assumption on q1(y1|x). The optimal q1(y1|x)
turns out to be Gaussian because the model p(y1, y2, x) is Gaussian.

The equation for p̄(y2|x) gives similarly

log p̄(y2|x) = Eq1(y1|x) [log p(y1, y2, x)] + const (S.36)

= −1

2
Eq1(y1|x)

[
2y21 + 2y22 + x2 + 2y1y2 − 2y1x− 2y2x

]
+ const (S.37)

= −1

2

(
2y22 + 2Eq1(y1|x)[y1]y2 − 2y2x

)
+ const (S.38)

= −1

2

(
2y22 + 2m1y2 − 2y2x

)
+ const (S.39)

= −1

2

(
2y22 − 2y2(x−m1)

)
+ const (S.40)

where we have absorbed all terms not involving y2 into the constant. Moreover, we set
Eq1(y1|x)[y1] = m1. With (S.34), this is defines a Gaussian distribution with variance and
mean equal to

σ22 =
1

2
m2 =

1

2
(x−m1) (S.41)

Hence the optimal marginal variational distributions q1(y1|x) and q2(y2|x) are both Gaus-
sian with variance equal to 1/2. Their means satisfy

m1 =
1

2
(x−m2) m2 =

1

2
(x−m1) (S.42)

These are two equations for two unknowns. We can solve them as follows

2m1 = x−m2 (S.43)

= x− 1

2
(x−m1) (S.44)

4m1 = 2x− x+m1 (S.45)

3m1 = x (S.46)

m1 =
1

3
x (S.47)

Hence

m2 =
1

2
x− 1

6
x =

2

6
x =

1

3
x (S.48)
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In summary, we find

q1(y1|x) = N
(
y1;

x

3
,
1

2

)
q2(y2|x) = N

(
y2;

x

3
,
1

2

)
(S.49)

and the optimal variational distribution q(y1, y2|x) = q1(y1|x)q2(y2|x) is Gaussian. We
have made the mean field (independence) assumption but not the Gaussianity assumption.
Gaussianity of the variational distribution is a consequence of the Gaussianity of the model
p(y1, y2, x).

Comparison with the true posterior shows that the mean field variational distribution
q(y1, y2|x) has the same mean but ignores the correlation and underestimates the marginal
variances. The true posterior and the mean field approximation are shown in Figure 1.

y1
-2 0 2

y
2

-2

0

2

Figure 1: In blue: correlated true posterior. In red: mean field approximation.

Exercise 3. Variational posterior approximation I

We have seen that maximising the evidence lower bound (ELBO) with respect to the variational distribu-
tion q minimises the Kullback-Leibler divergence to the true posterior p. We here assume that q and p
are probability density functions so that the Kullback-Leibler divergence between them is defined as

KL(q||p) =

∫
q(x) log

q(x)

p(x)
dx = Eq

[
log

q(x)

p(x)

]
. (12)

(a) You can here assume that x is one-dimensional so that p and q are univariate densities. Consider
the case where p is a bimodal density but the variational densities q are unimodal. Sketch a figure
that shows p and a variational distribution q that has been learned by minimising KL(q||p). Explain
qualitatively why the sketched q minimises KL(q||p).

Solution. A possible sketch is shown in the figure below.
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Explanation: We can divide the domain of p and q into the areas where p is small (zero)
and those where p has significant mass. Since the objective features q in the numerator
while p is in the denominator, an optimal q needs to be zero where p is zero. Otherwise, it
would incur a large penalty (division by zero). Since we take the expectation with respect
to q, however, regions where p > 0 do not need to be covered by q; cutting them out does
not incur a penalty. Hence, optimal unimodal q only cover one peak of the bimodal p.

(b) Assume that the true posterior p(x) = p(x1, x2) factorises into two Gaussians of mean zero and
variances σ2

1 and σ2
2,

p(x1, x2) =
1√

2πσ2
1

exp

[
− x21

2σ2
1

]
1√

2πσ2
2

exp

[
− x22

2σ2
2

]
. (13)

Assume further that the variational density q(x1, x2;λ2) is parametrised as

q(x1, x2;λ2) =
1

2πλ2
exp

[
−x

2
1 + x22
2λ2

]
(14)

where λ2 is the variational parameter that is learned by minimising KL(q||p). If σ2
2 is much larger

than σ2
1, do you expect λ2 to be closer to σ2

2 or to σ2
1? Provide an explanation.

Solution. The learned variational parameter will be closer to σ21 (the smaller of the two
σ2i ).

Explanation: First note that the σ2i are the variances along the two different axes, and
that λ2 is the single variance for both x1 and x2. The objective penalises q if it is non-zero
where p is zero (see above). The variational parameter λ2 thus will get adjusted during
learning so that the variance of q is close to the smallest of the two σ2i .

Exercise 4. Variational posterior approximation II

We have seen that maximising the evidence lower bound (ELBO) with respect to the variational distribu-
tion minimises the Kullback-Leibler divergence to the true posterior. We here investigate the nature of
the approximation if the family of variational distributions does not include the true posterior.

(a) Assume that the true posterior for x = (x1, x2) is given by

p(x) = N (x1;σ2
1)N (x2;σ2

2) (15)
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and that our variational distribution q(x;λ2) is

q(x;λ2) = N (x1;λ2)N (x2;λ2), (16)

where λ > 0 is the variational parameter. Provide an equation for

J(λ) = KL(q(x;λ2)||p(x)), (17)

where you can omit additive terms that do not depend on λ.

Solution. We write

KL(q(x;λ2)||p(x)) = Eq

[
log

q(x;λ2)

p(x)

]
(S.50)

= Eq log q(x;λ2)− Eq log p(x) (S.51)

= Eq logN (x1;λ
2) + Eq logN (x2;λ

2)

− Eq logN (x1;σ
2
1)− Eq logN (x2;σ

2
2) (S.52)

We further have

Eq logN (xi;λ
2) = Eq log

[
1√

2πλ2
exp

[
− x2i

2λ2

]]
(S.53)

= log

[
1√

2πλ2

]
− Eq

[
x2i
2λ2

]
(S.54)

= − log λ− λ2

2λ2
+ const (S.55)

= − log λ− 1

2
+ const (S.56)

= − log λ+ const (S.57)

where we have used that for zero mean xi, Eq[x
2
i ] = V(xi) = λ2.

We similarly obtain

Eq logN (xi;σ
2
i ) = Eq log

 1√
2πσ2i

exp

[
− x2i

2σ2i

] (S.58)

= log

 1√
2πσ2i

− Eq

[
x2i
2σ2i

]
(S.59)

= − log σi −
λ2

2σ2i
+ const (S.60)

= − λ2

2σ2i
+ const (S.61)

We thus have

KL(q(x;λ2||p(x)) = −2 log λ+ λ2
(

1

2σ21
+

1

2σ22

)
+ const (S.62)

(b) Determine the value of λ that minimises J(λ) = KL(q(x;λ2)||p(x)). Interpret the result and relate
it to properties of the Kullback-Leibler divergence.
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Solution. Taking derivatives of J(λ) with respect to λ gives

∂J(λ)

∂λ
= − 2

λ
+ λ

(
1

σ21
+

1

σ22

)
(S.63)

Setting it zero yields

1

λ2
=

1

2

(
1

σ21
+

1

σ22

)
(S.64)

so that

λ2 = 2
σ21σ

2
2

σ21 + σ22
(S.65)

or

λ =
√

2

√
σ21σ

2
2

σ21 + σ22
(S.66)

This is a minimum because the second derivative of J(λ)

∂2J(λ)

∂λ2
=

2

λ2
+

(
1

σ21
+

1

σ22

)
(S.67)

is positive for all λ > 0.

The result has an intuitive explanation: the optimal variance λ2 is the harmonic mean of
the variances σ2i of the true posterior. In other words, the optimal precision 1/λ2 is given
by the average of the precisions 1/σ2i of the two dimensions.

If the variances are not equal, e.g. if σ22 > σ21, we see that the optimal variance of the
variational distribution strikes a compromise between two types of penalties in the KL-
divergence: the penalty of having a bad fit because the variational distribution along
dimension two is too narrow; and along dimension one, the penalty for the variational
distribution to be nonzero when p is small.
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