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Exercises for the tutorials: 5 and 9.

The other exercises are for self-study and exam preparation. All material is examinable unless
otherwise mentioned.

Exercise 1. Maximum likelihood estimation for a Gaussian

The Gaussian pdf parametrised by mean µ and standard deviation σ is given by

p(x;θ) =
1√

2πσ2
exp

[
−(x− µ)2

2σ2

]
, θ = (µ, σ).

(a) Given iid data D = {x1, . . . , xn}, what is the likelihood function L(θ) for the Gaussian
model?

(b) What is the log-likelihood function `(θ)?

(c) Show that the maximum likelihood estimates for the mean µ and standard deviation σ are
the sample mean

x̄ =
1

n

n∑
i=1

xi (1)

and the square root of the sample variance

S2 =
1

n

n∑
i=1

(xi − x̄)2. (2)

Exercise 2. Posterior of the mean of a Gaussian with known variance

Given iid data D = {x1, . . . , xn}, compute p(µ|D, σ2) for the Bayesian model

p(x|µ) =
1√

2πσ2
exp

[
−(x− µ)2

2σ2

]
p(µ;µ0, σ

2
0) =

1√
2πσ20

exp

[
−(µ− µ0)2

2σ20

]
(3)

where σ2 is a fixed known quantity.
Hint: You may use that

N (x;m1, σ
2
1)N (x;m2, σ

2
2) ∝ N (x;m3, σ

2
3) (4)

where

N (x;µ, σ2) =
1√

2πσ2
exp

[
−(x− µ)2

2σ2

]
(5)

σ23 =

(
1

σ21
+

1

σ22

)−1
=

σ21σ
2
2

σ21 + σ22
(6)

m3 = σ23

(
m1

σ21
+
m2

σ22

)
= m1 +

σ21
σ21 + σ22

(m2 −m1) (7)
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Exercise 3. Maximum likelihood estimation of probability tables in fully observed
directed graphical models of binary variables

We assume that we are given a parametrised directed graphical model for variables x1, . . . , xd,

p(x;θ) =
d∏
i=1

p(xi|pai;θi) xi ∈ {0, 1} (8)

where the conditionals are represented by parametrised probability tables, For example, if pa3 =
{x1, x2}, p(x3|pa3;θ3) is represented as

p(x3 = 1|x1, x2; θ13, . . . , θ43)) x1 x2

θ13 0 0
θ23 1 0
θ33 0 1
θ43 1 1

with θ3 = (θ13, θ
2
3, θ

3
3, θ

4
3), and where the superscripts j of θj3 enumerate the different states that

the parents can be in.

(a) Assuming that xi has mi parents, verify that the table parametrisation of p(xi|pai;θi) is
equivalent to writing p(xi|pai;θi) as

p(xi|pai;θi) =

Si∏
s=1

(θsi )
1(xi=1,pai=s)(1− θsi )1(xi=0,pai=s) (9)

where Si = 2mi is the total number of states/configurations that the parents can be in,
and 1(xi = 1,pai = s) is one if xi = 1 and pai = s, and zero otherwise.

(b) For iid data D = {x(1), . . . ,x(n)} show that the likelihood can be represented as

p(D;θ) =

d∏
i=1

Si∏
s=1

(θsi )
ns
xi=1(1− θsi )

ns
xi=0 (10)

where nsxi=1 is the number of times the pattern (xi = 1,pai = s) occurs in the data D,
and equivalently for nsxi=0.

(c) Show that the log-likelihood decomposes into sums of terms that can be independently
optimised, and that each term corresponds to the log-likelihood for a Bernoulli model.

(d) Referring to the lecture material, conclude that the maximum likelihood estimates are
given by

θ̂si =
nsxi=1

nsxi=1 + nsxi=0

=

∑n
j=1 1(x

(j)
i = 1, pa

(j)
i = s)∑n

j=1 1(pa
(j)
i = s)

(11)
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Exercise 4. Cancer-asbestos-smoking example: MLE

Consider the model specified by the DAG

a s

c

The distribution of a and s are Bernoulli distributions with parameter (success probability) θa
and θs, respectively, i.e.

p(a; θa) = θaa(1− θa)1−a p(s; θs) = θss(1− θs)1−s, (12)

and the distribution of c given the parents is parametrised as specified in the following table

p(c = 1|a, s; θ1c , . . . , θ4c )) a s

θ1c 0 0
θ2c 1 0
θ3c 0 1
θ4c 1 1

The free parameters of the model are (θa, θs, θ
1
c , . . . , θ

4
c ).

Assume we observe the following iid data (each row is a data point).

a s c

0 1 1
0 0 0
1 0 1
0 0 0
0 1 0

(a) Determine the maximum-likelihood estimates of θa and θs

(b) Determine the maximum-likelihood estimates of θ1c , . . . , θ
4
c .

Exercise 5. Bayesian inference for the Bernoulli model

Consider the Bayesian model

p(x|θ) = θx(1− θ)1−x p(θ;α0) = B(θ;α0, β0)

where x ∈ {0, 1}, θ ∈ [0, 1],α0 = (α0, β0), and

B(θ;α, β) ∝ θα−1(1− θ)β−1 θ ∈ [0, 1] (13)
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(a) Given iid data D = {x1, . . . , xn} show that the posterior of θ given D is

p(θ|D) = B(θ;αn, βn)

αn = α0 + nx=1 βn = β0 + nx=0

where nx=1 denotes the number of ones and nx=0 the number of zeros in the data.

(b) Compute the mean of a Beta random variable f ,

p(f ;α, β) = B(f ;α, β) f ∈ [0, 1], (14)

using that ∫ 1

0
fα−1(1− f)β−1df = B(α, β) =

Γ(α)Γ(β)

Γ(α+ β)
(15)

where B(α, β) denotes the Beta function and where the Gamma function Γ(t) is defined
as

Γ(t) =

∫ ∞
o

f t−1 exp(−f)df (16)

and satisfies Γ(t+ 1) = tΓ(t).
Hint: It will be useful to represent the partition function in terms of the Beta function.

(c) Show that the predictive posterior probability p(x = 1|D) for a new independently observed
data point x equals the posterior mean of p(θ|D), which in turn is given by

E(θ|D) =
α0 + nx=1

α0 + β0 + n
. (17)

Exercise 6. Bayesian inference of probability tables in fully observed directed graph-
ical models of binary variables

This is the Bayesian analogue of Exercise 3 and the notation follows that exercise. We consider
the Bayesian model

p(x|θ) =
d∏
i=1

p(xi|pai,θi) xi ∈ {0, 1} (18)

p(θ;α0,β0) =
d∏
i=1

Si∏
s=1

B(θsi ;α
s
i,0, β

s
i,0) (19)

where p(xi|pai,θi) is defined via (9), α0 is a vector of hyperparameters containing all αsi,0, β0

the vector containing all βsi,0, and as before B denotes the Beta distribution. Under the prior,
all parameters are independent.

(a) For iid data D = {x(1), . . . ,x(n)} show that

p(θ|D) =

d∏
i=1

Si∏
s=1

B(θsi , α
s
i,n, β

s
i,n) (20)

where

αsi,n = αsi,0 + nsxi=1 βsi,n = βsi,0 + nsxi=0 (21)

and that the parameters are also independent under the posterior.
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(b) For a variable xi with parents pai, compute the posterior predictive probability p(xi =
1|pai,D)

where ns = nsxi=0 + nsxi=1 denotes the number of times the parent configuration s occurs
in the observed data D.

Exercise 7. Cancer-asbestos-smoking example: Bayesian inference

Consider the model specified by the DAG

a s

c

The distribution of a and s are Bernoulli distributions with parameter (success probability) θa
and θs, respectively, i.e.

p(a|θa) = θaa(1− θa)1−a p(s|θs) = θss(1− θs)1−s, (22)

and the distribution of c given the parents is parametrised as specified in the following table

p(c = 1|a, s, θ1c , . . . , θ4c )) a s

θ1c 0 0
θ2c 1 0
θ3c 0 1
θ4c 1 1

We assume that the prior over the parameters of the model, (θa, θs, θ
1
c , . . . , θ

4
c ), factorises and is

given by beta distributions with hyperparameters α0 = 1 and β0 = 1 (same for all parameters).

Assume we observe the following iid data (each row is a data point).

a s c

0 1 1
0 0 0
1 0 1
0 0 0
0 1 0

(a) Determine the posterior predictive probabilities p(a = 1|D) and p(s = 1|D).

(b) Determine the posterior predictive probabilities p(c = 1|pa,D) for all possible parent
configurations.
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Exercise 8. Learning parameters of a directed graphical model

We consider the directed graphical model shown below on the left for the four binary variables
t, b, s, x, each being either zero or one. Assume that we have observed the data shown in the
table on the right.

Model:

t b

sx

t = 1 has tuberculosis
b = 1 has bronchitis
s = 1 has shortness of breath
x = 1 has positive x-ray

Observed data:

x s t b

0 1 0 1
0 0 0 0
0 1 0 1
0 1 0 1
0 0 0 0
0 0 0 0
0 1 0 1
0 1 0 1
0 0 0 1
1 1 1 0

We assume the (conditional) pmf of s|t, b is specified by the following parametrised probability
table:

p(s = 1|t, b; θ1s , . . . , θ4s)) t b

θ1s 0 0
θ2s 1 0
θ3s 0 1
θ4s 1 1

(a) What are the maximum likelihood estimates for p(s = 1|b = 0, t = 0) and p(s = 1|b =
0, t = 1), i.e. the parameters θ1s and θ2s?

(b) Assume each parameter in the table for p(s|t, b) has a uniform prior on (0, 1). Compute
the posterior mean of the parameters of p(s = 1|b = 0, t = 0) and p(s = 1|b = 0, t = 1) and
explain the difference to the maximum likelihood estimates.

Exercise 9. Factor analysis

A friend proposes to improve the factor analysis model by working with correlated latent vari-
ables. The proposed model is

p(h; C) = N (h; 0,C) p(v|h; F,ΨΨΨ, c) = N (v; Fh + c,ΨΨΨ) (23)

where C is some covariance matrix, and the other variables are defined as in the lecture slides.
N (x;µµµ,ΣΣΣ) denotes the pdf of a Gaussian with mean µµµ and covariance matrix ΣΣΣ.

(a) What is marginal distribution of the visibles p(v;θ) where θ stands for the parameters
C,F, c,ΨΨΨ?

6 ©Michael U. Gutmann, UoE, 2018-23 CC BY 4.0 cb

https://creativecommons.org/licenses/by/4.0/


(b) Assume that the singular value decomposition of C is given by

C = EΛE> (24)

where Λ = diag(λ1, . . . , λD) is a diagonal matrix containing the eigenvalues, and E is a
orthonormal matrix containing the corresponding eigenvectors. The matrix square root of
C is the matrix M such that

MM = C, (25)

and we denote it by C1/2. Show that the matrix square root of C equals

C1/2 = E diag(
√
λ1, . . . ,

√
λD)E>. (26)

(c) Show that the proposed factor analysis model is equivalent to the original factor analysis
model

p(h; I) = N (h; 0, I) p(v|h; F̃,ΨΨΨ, c) = N (v; F̃h + c,ΨΨΨ) (27)

with F̃ = FC1/2, so that the extra parameters given by the covariance matrix C are
actually redundant and nothing is gained with the richer parametrisation.

Exercise 10. Independent component analysis

(a) Whitening corresponds to linearly transforming a random variable x (or the corresponding
data) so that the resulting random variable z has an identity covariance matrix, i.e.

z = Vx with V[x] = C and V[z] = I.

The matrix V is called the whitening matrix. We do not make a distributional assumption
on x, in particular x may or may not be Gaussian.

Given the eigenvalue decomposition C = EΛE>, show that

V = diag(λ
−1/2
1 , . . . , λ

−1/2
d )E> (28)

is a whitening matrix.

(b) Consider the ICA model

v = Ah, h ∼ ph(h), ph(h) =

D∏
i=1

ph(hi), (29)

where the matrix A is invertible and the hi are independent random variables of mean
zero and variance one. Let V be a whitening matrix for v. Show that z = Vv follows the
ICA model

z = Ãh, h ∼ ph(h), ph(h) =
D∏
i=1

ph(hi), (30)

where Ã is an orthonormal matrix.
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Exercise 11. Maximum likelihood estimation and unnormalised models

Consider the Ising model for two binary random variables (x1, x2),

p(x1, x2; θ) ∝ exp (θx1x2 + x1 + x2) , xi ∈ {−1, 1},

(a) Compute the partition function Z(θ).

(b) The figure below shows the graph of f(θ) = ∂ logZ(θ)
∂θ .

Assume you observe three data points (x1, x2) equal to (−1,−1), (−1, 1), and (1,−1).
Using the figure, what is the maximum likelihood estimate of θ? Justify your answer.
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