
Probabilistic Modelling and Reasoning

Solutions 6
Spring 2023

Michael Gutmann

Exercises for the tutorials: 5 and 9.

The other exercises are for self-study and exam preparation. All material is examinable unless otherwise
mentioned.

Exercise 1. Maximum likelihood estimation for a Gaussian

The Gaussian pdf parametrised by mean µ and standard deviation σ is given by

p(x;θ) =
1√

2πσ2
exp

[
− (x− µ)2

2σ2

]
, θ = (µ, σ).

(a) Given iid data D = {x1, . . . , xn}, what is the likelihood function L(θ) for the Gaussian model?

Solution. For iid data, the likelihood function is

L(θ) =
n∏
i

p(xi;θ) (S.1)

=
n∏
i

1√
2πσ2

exp

[
−(xi − µ)2

2σ2

]
(S.2)

=
1

(2πσ2)n/2
exp

[
− 1

2σ2

n∑
i=1

(xi − µ)2

]
. (S.3)

(b) What is the log-likelihood function `(θ)?

Solution. Taking the log of the likelihood function gives

`(θ) = −n
2

log(2πσ2)− 1

2σ2

n∑
i=1

(xi − µ)2 (S.4)

(c) Show that the maximum likelihood estimates for the mean µ and standard deviation σ are the
sample mean

x̄ =
1

n

n∑
i=1

xi (1)

and the square root of the sample variance

S2 =
1

n

n∑
i=1

(xi − x̄)2. (2)

Solution. Since the logarithm is strictly monotonically increasing, the maximiser of the
log-likelihood equals the maximiser of the likelihood. It is easier to take derivatives for the
log-likelihood function than for the likelihood function so that the maximum likelihood
estimate is typically determined using the log-likelihood.

Given the algebraic expression of `(θ), it is simpler to work with the variance v = σ2 rather
than the standard deviation. (In the lecture notes, we used the variable η to denote the
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transformed parameters. We could have written η = σ2, but v is a more natural notation
for the variance.) Since σ > 0 the function v = g(σ) = σ2 is invertible, and the invariance
of the MLE to re-parametrisation guarantees that

σ̂ =
√
v̂.

We now thus maximise the function J(µ, v),

J(µ, v) = −n
2

log(2πv)− 1

2v

n∑
i=1

(xi − µ)2 (S.5)

with respect to µ and v.

Taking partial derivatives gives

∂J

∂µ
=

1

v

n∑
i=1

(xi − µ) (S.6)

=
1

v

n∑
i=1

xi −
n

v
µ (S.7)

∂J

∂v
= −n

2

1

v
+

1

2v2

n∑
i=1

(xi − µ)2 (S.8)

A necessary condition for optimality is that the partial derivatives are zero. We thus
obtain the conditions

1

v

n∑
i=1

(xi − µ) = 0 (S.9)

−n
2

1

v
+

1

2v2

n∑
i=1

(xi − µ)2 = 0 (S.10)

From the first condition it follows that

µ̂ =
1

n

n∑
i=1

xi (S.11)

The second condition thus becomes

−n
2

1

v
+

1

2v2

n∑
i=1

(xi − µ̂)2 = 0 (multiply with v2 and rearrange) (S.12)

1

2

n∑
i=1

(xi − µ̂)2 =
n

2
v, (S.13)

and hence

v̂ =
1

n

n∑
i=1

(xi − µ̂)2, (S.14)

We now check that this solution corresponds to a maximum by computing the Hessian
matrix

H(µ, v) =

(
∂2J
∂µ2

∂2J
∂µ∂v

∂2J
∂µ∂v

∂2J
∂v2

)
(S.15)

2 ©Michael U. Gutmann, UoE, 2018-23 CC BY 4.0 cb

https://creativecommons.org/licenses/by/4.0/


If the Hessian negative definite at (µ̂, v̂), the point is a (local) maximum. Since we only
have one critical point, (µ̂, v̂), the local maximum is also a global maximum. Taking second
derivatives gives

H(µ, v) =

(
−n
v − 1

v2
∑n

i=1(xi − µ)
− 1
v2
∑n

i=1(xi − µ) n
2

1
v2
− 1

v3
∑n

i=1(xi − µ)2

)
. (S.16)

Substituting the values for (µ̂, v̂) gives

H(µ̂, v̂) =

(
−n
v̂ 0

0 −n
2

1
v̂2

)
, (S.17)

which is negative definite. Note that the the (negative) curvature increases with n, which
means that J(µ, v), and hence the log-likelihood becomes more and more peaked as the
number of data points n increases.

Exercise 2. Posterior of the mean of a Gaussian with known variance

Given iid data D = {x1, . . . , xn}, compute p(µ|D, σ2) for the Bayesian model

p(x|µ) =
1√

2πσ2
exp

[
− (x− µ)2

2σ2

]
p(µ;µ0, σ

2
0) =

1√
2πσ2

0

exp

[
− (µ− µ0)2

2σ2
0

]
(3)

where σ2 is a fixed known quantity.
Hint: You may use that

N (x;m1, σ
2
1)N (x;m2, σ

2
2) ∝ N (x;m3, σ

2
3) (4)

where

N (x;µ, σ2) =
1√

2πσ2
exp

[
− (x− µ)2

2σ2

]
(5)

σ2
3 =

(
1

σ2
1

+
1

σ2
2

)−1
=

σ2
1σ

2
2

σ2
1 + σ2

2

(6)

m3 = σ2
3

(
m1

σ2
1

+
m2

σ2
2

)
= m1 +

σ2
1

σ2
1 + σ2

2

(m2 −m1) (7)

Solution. We re-use the expression for the likelihood L(µ) from Exercise 1.

L(µ) =
1

(2πσ2)n/2
exp

[
− 1

2σ2

n∑
i=1

(xi − µ)2

]
, (S.18)

which we can write as

L(µ) ∝ exp

[
− 1

2σ2

n∑
i=1

(xi − µ)2

]
(S.19)

∝ exp

[
− 1

2σ2

n∑
i=1

(x2i − 2µxi + µ2)

]
(S.20)

∝ exp

[
− 1

2σ2

(
−2µ

n∑
i=1

xi + nµ2

)]
(S.21)

∝ exp

[
− 1

2σ2
(
−2nµx̄+ nµ2

)]
(S.22)

∝ exp
[
− n

2σ2
(µ− x̄)2

]
(S.23)

∝ N (µ; x̄, σ2/n). (S.24)
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The posterior is

p(µ|D) ∝ L(θ)p(µ;µ0, σ
2
0) (S.25)

∝ N (µ; x̄, σ2/n)N (µ;µ0, σ
2
0) (S.26)

so that with (4), we have

p(µ|D) ∝ N (µ;µn, σ
2
n) (S.27)

σ2n =

(
1

σ2/n
+

1

σ20

)−1
(S.28)

=
σ20σ

2/n

σ20 + σ2/n
(S.29)

µn = σ2n

(
x̄

σ2/n
+
µ0
σ20

)
(S.30)

=
1

σ20 + σ2/n

(
σ20x̄+ (σ2/n)µ0

)
(S.31)

=
σ20

σ20 + σ2/n
x̄+

σ2/n

σ20 + σ2/n
µ0. (S.32)

As n increases, σ2/n goes to zero so that σ2n → 0 and µn → x̄. This means that with an
increasing amount of data, the posterior of the mean tends to be concentrated around the
maximum likelihood estimate x̄.

From (7), we also have that

µn = µ0 +
σ20

σ2/n+ σ20
(x̄− µ0), (S.33)

which shows more clearly that the value of µn lies on a line with end-points µ0 (for n = 0) and
x̄ (for n→∞). As the amount of data increases, µn moves form the mean under the prior, µ0,
to the average of the observed sample, that is the MLE x̄.

Exercise 3. Maximum likelihood estimation of probability tables in fully observed
directed graphical models of binary variables

We assume that we are given a parametrised directed graphical model for variables x1, . . . , xd,

p(x;θ) =

d∏
i=1

p(xi|pai;θi) xi ∈ {0, 1} (8)

where the conditionals are represented by parametrised probability tables, For example, if pa3 = {x1, x2},
p(x3|pa3;θ3) is represented as

p(x3 = 1|x1, x2; θ13, . . . , θ
4
3)) x1 x2

θ13 0 0
θ23 1 0
θ33 0 1
θ43 1 1

with θ3 = (θ13, θ
2
3, θ

3
3, θ

4
3), and where the superscripts j of θj3 enumerate the different states that the parents

can be in.
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(a) Assuming that xi has mi parents, verify that the table parametrisation of p(xi|pai;θi) is equivalent
to writing p(xi|pai;θi) as

p(xi|pai;θi) =

Si∏
s=1

(θsi )
1(xi=1,pai=s)(1− θsi )1(xi=0,pai=s) (9)

where Si = 2mi is the total number of states/configurations that the parents can be in, and 1(xi =
1,pai = s) is one if xi = 1 and pai = s, and zero otherwise.

Solution. The number of configurations that m binary parents can be in is given by Si.
The questions thus boils down to showing that p(xi = 1|pai = k;θi) = θki for any state
k ∈ {1, . . . , Si} of the parents of xi. Since 1(xi = 1,pai = s) = 0 unless s = k, we have
indeed that

p(xi = 1|pai = k;θi) =

∏
s 6=k

(θsi )
0(1− θsi )0

 (θki )1(xi=1,pai=k)(1− θki )1(xi=0,pai=k) (S.34)

= 1 · (θki )1(xi=1,pai=k)(1− θki )0 (S.35)

= θki . (S.36)

(b) For iid data D = {x(1), . . . ,x(n)} show that the likelihood can be represented as

p(D;θ) =

d∏
i=1

Si∏
s=1

(θsi )
ns
xi=1(1− θsi )

ns
xi=0 (10)

where nsxi=1 is the number of times the pattern (xi = 1,pai = s) occurs in the data D, and
equivalently for nsxi=0.

Solution. Since the data are iid, we have

p(D;θ) =

n∏
j=1

p(x(j);θ) (S.37)

(S.38)

where each term p(x(j);θ) factorises as in (8),

p(x(j);θ) =
d∏
i=1

p(x
(j)
i |pa

(j)
i ;θi) (S.39)

with x
(j)
i denoting the i-th element of x(j) and pa

(j)
i the corresponding parents. The

conditionals p(x
(j)
i |pa

(j)
i ;θi) factorise further according to (9),

p(x
(j)
i |pa

(j)
i ;θi) =

Si∏
s=1

(θsi )
1(x

(j)
i =1,pa

(j)
i =s)(1− θsi )1(x

(j)
i =0,pa

(j)
i =s), (S.40)

so that

p(D;θ) =
n∏
j=1

d∏
i=1

p(x
(j)
i |pa

(j)
i ;θi) (S.41)

=
n∏
j=1

d∏
i=1

Si∏
s=1

(θsi )
1(x

(j)
i =1,pa

(j)
i =s)(1− θsi )1(x

(j)
i =0,pa

(j)
i =s) (S.42)
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Swapping the order of the products so that the product over the data points comes first,
we obtain

p(D;θ) =

d∏
i=1

Si∏
s=1

n∏
j=1

(θsi )
1(x

(j)
i =1,pa

(j)
i =s)(1− θsi )1(x

(j)
i =0,pa

(j)
i =s) (S.43)

We next split the product over j into two products, one for all j where x
(j)
i = 1, and one

for all j where x
(j)
i = 0

p(D;θ) =
d∏
i=1

Si∏
s=1

∏
j:

x
(j)
i =1

∏
j:

x
(j)
i =0

(θsi )
1(x

(j)
i =1,pa

(j)
i =s)(1− θsi )1(x

(j)
i =0,pa

(j)
i =s) (S.44)

=
d∏
i=1

Si∏
s=1

∏
j:

x
(j)
i =1

(θsi )
1(x

(j)
i =1,pa

(j)
i =s)

∏
j:

x
(j)
i =0

(1− θsi )1(x
(j)
i =0,pa

(j)
i =s) (S.45)

=

d∏
i=1

Si∏
s=1

(θsi )
∑n

j=1 1(x
(j)
i =1,pa

(j)
i =s)(1− θsi )

∑n
j=1 1(x

(j)
i =0,pa

(j)
i =s) (S.46)

=

d∏
i=1

Si∏
s=1

(θsi )
ns
xi=1(1− θsi )

ns
xi=0 (S.47)

where

nsxi=1 =
n∑
j=1

1(x
(j)
i = 1,pa

(j)
i = s) nsxi=0 =

n∑
j=1

1(x
(j)
i = 0,pa

(j)
i = s) (S.48)

is the number of times xi = 1 and xi = 0, respectively, with its parents being in state s.

(c) Show that the log-likelihood decomposes into sums of terms that can be independently optimised,
and that each term corresponds to the log-likelihood for a Bernoulli model.

Solution. The log-likelihood `(θ) equals

`(θ) = log p(D;θ) (S.49)

= log
d∏
i=1

Si∏
s=1

(θsi )
ns
xi=1(1− θsi )

ns
xi=0 (S.50)

=
d∑
i=1

Si∑
s=1

log
[
(θsi )

ns
xi=1(1− θsi )

ns
xi=0

]
(S.51)

=
d∑
i=1

Si∑
s=1

nsxi=1 log(θsi ) + nsxi=0 log(1− θsi ) (S.52)

Since the parameters θsi are not coupled in any way, maximising `(θ) can be achieved by
maximising each term `is(θ

s
i ) individually,

`is(θ
s
i ) = nsxi=1 log(θsi ) + nsxi=0 log(1− θsi ). (S.53)

Moreover, `is(θ
s
i ) corresponds to the log-likelihood for a Bernoulli model with success

probability θsi and data with nsxi=1 number of ones and nsxi=0 number of zeros.
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(d) Referring to the lecture material, conclude that the maximum likelihood estimates are given by

θ̂si =
nsxi=1

nsxi=1 + nsxi=0

=

∑n
j=1 1(x

(j)
i = 1,pa

(j)
i = s)∑n

j=1 1(pa
(j)
i = s)

(11)

Solution. Given the result from the previous question, we can optimise each term `is(θ
s
i )

separately. Furthermore, each term formally corresponds to a log-likelihood for a Bernoulli
model, so that we can immediately use the results derived in the lecture, which gives

θ̂si =
nsxi=1

nsxi=1 + nsxi=0

(S.54)

Since nsxi=1 =
∑n

j=1 1(x
(j)
i = 1, pa

(j)
i = s) and

nsxi=1 + nsxi=0 =

n∑
j=1

1(x
(j)
i = 1, pa

(j)
i = s) +

n∑
j=1

1(x
(j)
i = 0,pa

(j)
i = s) (S.55)

=

n∑
j=1

1(pa
(j)
i = s), (S.56)

which gives

θ̂si =

∑n
j=1 1(x

(j)
i = 1,pa

(j)
i = s)∑n

j=1 1(pa
(j)
i = s)

. (S.57)

Hence, to determine θ̂si , we first count the number of times the parents of xi are in state
s, which gives the denominator, and then among them, count the number of times xi = 1,
which gives the numerator.

Exercise 4. Cancer-asbestos-smoking example: MLE

Consider the model specified by the DAG

a s

c

The distribution of a and s are Bernoulli distributions with parameter (success probability) θa and θs,
respectively, i.e.

p(a; θa) = θaa(1− θa)1−a p(s; θs) = θss(1− θs)1−s, (12)

and the distribution of c given the parents is parametrised as specified in the following table

p(c = 1|a, s; θ1c , . . . , θ4c )) a s

θ1c 0 0
θ2c 1 0
θ3c 0 1
θ4c 1 1
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The free parameters of the model are (θa, θs, θ
1
c , . . . , θ

4
c ).

Assume we observe the following iid data (each row is a data point).

a s c

0 1 1
0 0 0
1 0 1
0 0 0
0 1 0

(a) Determine the maximum-likelihood estimates of θa and θs

Solution. The maximum likelihood estimate (MLE) θ̂a is given by the fraction of times
that a is 1 in the data set. Hence θ̂a = 1/5. Similarly, the MLE θ̂s is 2/5.

(b) Determine the maximum-likelihood estimates of θ1c , . . . , θ
4
c .

Solution. With (S.57), we have

p̂(c = 1|a, s) a s

θ̂1c = 0 0 0

θ̂2c = 1/1 1 0

θ̂3c = 1/2 0 1

θ̂4c not defined 1 1

This because, for example, we have two observations where (a, s) = (0, 0), and among
them, c = 1 never occurs, so that the MLE for p(c = 1|a, s) is zero.

This example illustrates some issues with maximum likelihood estimates: We may get
extreme probabilities, zero or one, or if the parent configuration does not occur in the
observed data, the estimate is undefined.

Exercise 5. Bayesian inference for the Bernoulli model

Consider the Bayesian model

p(x|θ) = θx(1− θ)1−x p(θ;α0) = B(θ;α0, β0)

where x ∈ {0, 1}, θ ∈ [0, 1],α0 = (α0, β0), and

B(θ;α, β) ∝ θα−1(1− θ)β−1 θ ∈ [0, 1] (13)

(a) Given iid data D = {x1, . . . , xn} show that the posterior of θ given D is

p(θ|D) = B(θ;αn, βn)

αn = α0 + nx=1 βn = β0 + nx=0

where nx=1 denotes the number of ones and nx=0 the number of zeros in the data.
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Solution. This follows from

p(θ|D) ∝ L(θ)p(θ;α0) (S.58)

and from the expression for the likelihood function of the Bernoulli model, which is

L(θ) =

n∏
i=1

p(xi|θ) (S.59)

=

n∏
i=1

θxi(1− θ)1−xi (S.60)

= θ
∑n

i=1 xi(1− θ)
∑n

i=1(1−xi) (S.61)

= θnx=1(1− θ)nx=0 , (S.62)

where nx=1 =
∑n

i=1 xi denotes the number of 1’s in the data, and nx=0 =
∑n

i=1(1− xi) =
n− nx=1 the number of 0’s.

Inserting the expressions for the likelihood and prior into (S.58) gives

p(θ|D) ∝ θnx=1(1− θ)nx=0θα0−1(1− θ)β0−1 (S.63)

∝ θα0+nx=1−1(1− θ)β0+nx=0−1 (S.64)

∝ B(θ, α0 + nx=1, β0 + nx=0), (S.65)

which is the desired result. Since α0 and β0 are updated by the counts of ones and zeros
in the data, these hyperparameters are also referred to as “pseudo-counts”. Alternatively,
one can think that they are the counts that are observed in another iid data set which has
been previously analysed and used to determine the prior.

(b) Compute the mean of a Beta random variable f ,

p(f ;α, β) = B(f ;α, β) f ∈ [0, 1], (14)

using that ∫ 1

0

fα−1(1− f)β−1df = B(α, β) =
Γ(α)Γ(β)

Γ(α+ β)
(15)

where B(α, β) denotes the Beta function and where the Gamma function Γ(t) is defined as

Γ(t) =

∫ ∞
o

f t−1 exp(−f)df (16)

and satisfies Γ(t+ 1) = tΓ(t).
Hint: It will be useful to represent the partition function in terms of the Beta function.

Solution. We first write the partition function of p(f ;α, β) in terms of the Beta function

Z(α, β) =

∫ 1

0
fα−1(1− f)β−1 (S.66)

= B(α, β). (S.67)
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We then have that the mean E[f ] is given by

E[f ] =

∫ 1

0
fp(f ;α, β)df (S.68)

=
1

B(α, β)

∫ 1

0
ffα−1(1− f)β−1df (S.69)

=
1

B(α, β)

∫ 1

0
fα+1−1(1− f)β−1df (S.70)

=
B(α+ 1, β)

B(α, β)
(S.71)

=
Γ(α+ 1)Γ(β)

Γ(α+ 1 + β)

Γ(α+ β)

Γ(α)Γ(β)
(S.72)

=
αΓ(α)Γ(β)

(α+ β)Γ(α+ β)

Γ(α+ β)

Γ(α)Γ(β)
(S.73)

=
α

α+ β
(S.74)

where we have used the definition of the Beta function in terms of the Gamma function
and the property Γ(t+ 1) = tΓ(t).

(c) Show that the predictive posterior probability p(x = 1|D) for a new independently observed data
point x equals the posterior mean of p(θ|D), which in turn is given by

E(θ|D) =
α0 + nx=1

α0 + β0 + n
. (17)

Solution. We obtain

p(x = 1|D) =

∫ 1

0
p(x = 1, θ|D)dθ (sum rule) (S.75)

=

∫ 1

0
p(x = 1|θ,D)p(θ|D)dθ (product rule) (S.76)

=

∫ 1

0
p(x = 1|θ)p(θ|D)dθ (x ⊥⊥ D|θ) (S.77)

=

∫ 1

0
θp(θ|D)dθ (S.78)

= E[θ|D] (S.79)

From the previous question we know the mean of a Beta random variable. Since θ ∼
B(θ;αn, βn), we obtain

p(x = 1|D) = E[θ|D] (S.80)

=
αn

αn + βn
(S.81)

=
α0 + nx=1

α0 + nx=1 + β0 + nx=0
(S.82)

=
α0 + nx=1

α0 + β0 + n
(S.83)

where the last equation follows from the fact that n = nx=0 +nx=1. Note that for n→∞,
the posterior mean tends to the MLE nx=1/n.
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Exercise 6. Bayesian inference of probability tables in fully observed directed graph-
ical models of binary variables

This is the Bayesian analogue of Exercise 3 and the notation follows that exercise. We consider the
Bayesian model

p(x|θ) =

d∏
i=1

p(xi|pai,θi) xi ∈ {0, 1} (18)

p(θ;α0,β0) =

d∏
i=1

Si∏
s=1

B(θsi ;α
s
i,0, β

s
i,0) (19)

where p(xi|pai,θi) is defined via (9), α0 is a vector of hyperparameters containing all αsi,0, β0 the vector
containing all βsi,0, and as before B denotes the Beta distribution. Under the prior, all parameters are
independent.

(a) For iid data D = {x(1), . . . ,x(n)} show that

p(θ|D) =

d∏
i=1

Si∏
s=1

B(θsi , α
s
i,n, β

s
i,n) (20)

where

αsi,n = αsi,0 + nsxi=1 βsi,n = βsi,0 + nsxi=0 (21)

and that the parameters are also independent under the posterior.

Solution. We start with

p(θ|D) ∝ p(D|θ)p(θ;α0,β0). (S.84)

Inserting the expression for p(D|θ) given in (10) and the assumed form of the prior gives

p(θ|D) ∝
d∏
i=1

Si∏
s=1

(θsi )
ns
xi=1(1− θsi )

ns
xi=0

d∏
i=1

Si∏
s=1

B(θsi ;α
s
i,0, β

s
i,0) (S.85)

∝
d∏
i=1

Si∏
s=1

(θsi )
ns
xi=1(1− θsi )

ns
xi=0B(θsi ;α

s
i,0, β

s
i,0) (S.86)

∝
d∏
i=1

Si∏
s=1

(θsi )
ns
xi=1(1− θsi )

ns
xi=0(θsi )

αs
i,0−1(1− θsi )

βs
i,0−1 (S.87)

∝
d∏
i=1

Si∏
s=1

(θsi )
αs
i,0+n

s
xi=1−1(1− θsi )

βs
i,0+n

s
xi=0−1 (S.88)

∝
d∏
i=1

Si∏
s=1

B(θsi ;α
s
i,0 + nsxi=1, β

s
i,0 + nsxi=0) (S.89)

It can be immediately verified that B(θsi ;α
s
i,0 + nsxi=1, β

s
i,0 + nsxi=0) is proportional to the

marginal p(θsi |D) so that the parameters are independent under the posterior too.

(b) For a variable xi with parents pai, compute the posterior predictive probability p(xi = 1|pai,D)
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Solution. The solution is analogue to the solution for question (c), using the sum rule,
independencies, and properties of beta random variables:

p(xi = 1|pai = s,D) =

∫
p(xi = 1, θsi |pai = s,D)dθsi (S.90)

=

∫
p(xi = 1|θsi ,pai = s,D)p(θsi |pai = s,D) (S.91)

=

∫
p(xi = 1|θsi ,pai = s)p(θsi |D) (S.92)

=

∫
θsi p(θ

s
i |D) (S.93)

= E[θsi |D)] (S.94)

(S.74)
=

αsi,n
αsi,n + βsi,n

(S.95)

=
αsi,0 + nsxi=1

αsi,0 + βsi,0 + ns
(S.96)

where ns = nsxi=0 + nsxi=1 denotes the number of times the parent configuration s occurs in the
observed data D.

Exercise 7. Cancer-asbestos-smoking example: Bayesian inference

Consider the model specified by the DAG

a s

c

The distribution of a and s are Bernoulli distributions with parameter (success probability) θa and θs,
respectively, i.e.

p(a|θa) = θaa(1− θa)1−a p(s|θs) = θss(1− θs)1−s, (22)

and the distribution of c given the parents is parametrised as specified in the following table

p(c = 1|a, s, θ1c , . . . , θ4c )) a s

θ1c 0 0
θ2c 1 0
θ3c 0 1
θ4c 1 1

We assume that the prior over the parameters of the model, (θa, θs, θ
1
c , . . . , θ

4
c ), factorises and is given by

beta distributions with hyperparameters α0 = 1 and β0 = 1 (same for all parameters).

Assume we observe the following iid data (each row is a data point).
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a s c

0 1 1
0 0 0
1 0 1
0 0 0
0 1 0

(a) Determine the posterior predictive probabilities p(a = 1|D) and p(s = 1|D).

Solution. With Exercise 5 question (c), we have

p(a = 1|D) = E(θa|D) =
1 + 1

1 + 1 + 5
=

2

7
(S.97)

p(s = 1|D) = E(θs|D) =
1 + 2

1 + 1 + 5
=

3

7
(S.98)

(b) Determine the posterior predictive probabilities p(c = 1|pa,D) for all possible parent configurations.

Solution. The parents of c are (a, s). With Exercise 6 question (b), we have

p(c = 1|a, s,D) a s

(1 + 0)/(1 + 1 + 2) = 1/4 0 0
(1 + 1)/(1 + 1 + 1) = 2/3 1 0
(1 + 1)/(1 + 1 + 2) = 1/2 0 1
(1 + 0)/(1 + 1) = 1/2 1 1

Compared to the MLE solution in Exercise (b) question (b), we see that the estimates
are less extreme. This is because they are a combination of the prior knowledge and the
observed data. Moreover, when we do not have any data, the posterior equals the prior,
unlike for the mle where the estimate is not defined.

Exercise 8. Learning parameters of a directed graphical model

We consider the directed graphical model shown below on the left for the four binary variables t, b, s, x,
each being either zero or one. Assume that we have observed the data shown in the table on the right.

Model:

t b

sx

t = 1 has tuberculosis
b = 1 has bronchitis
s = 1 has shortness of breath
x = 1 has positive x-ray

Observed data:

x s t b

0 1 0 1
0 0 0 0
0 1 0 1
0 1 0 1
0 0 0 0
0 0 0 0
0 1 0 1
0 1 0 1
0 0 0 1
1 1 1 0
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We assume the (conditional) pmf of s|t, b is specified by the following parametrised probability table:

p(s = 1|t, b; θ1s , . . . , θ4s)) t b

θ1s 0 0
θ2s 1 0
θ3s 0 1
θ4s 1 1

(a) What are the maximum likelihood estimates for p(s = 1|b = 0, t = 0) and p(s = 1|b = 0, t = 1), i.e.
the parameters θ1s and θ2s?

Solution. The maximum likelihood estimates (MLEs) are equal to the fraction of oc-
currences of the relevant events.

θ̂1s =

∑n
i=1 1(si = 1, bi = 0, ti = 0)∑n

i=1 1(bi = 0, ti = 0)
=

0

3
= 0 (S.99)

θ̂2s =

∑n
i=1 1(si = 1, bi = 0, ti = 1)∑n

i=1 1(bi = 0, ti = 1)
=

1

1
= 1 (S.100)

(b) Assume each parameter in the table for p(s|t, b) has a uniform prior on (0, 1). Compute the posterior
mean of the parameters of p(s = 1|b = 0, t = 0) and p(s = 1|b = 0, t = 1) and explain the difference
to the maximum likelihood estimates.

Solution. A uniform prior corresponds to a Beta distribution with hyperparameters
α0 = β0 = 1. With Exercise 6 question (b), we have

E(θ1s |D) =
α0 + 0

α0 + β0 + 3
=

1

5
(S.101)

E(θ2s |D) =
α0 + 1

α0 + β0 + 1
=

2

3
(S.102)

Compared to the MLE, the posterior mean is less extreme. It can be considered a
“smoothed out” or regularised estimate, where α0 > 0 and β0 > 0 provides regularisa-
tion (see https://en.wikipedia.org/wiki/Additive_smoothing). We can see a pull of
the parameters towards the prior predictive mean, which equals 1/2.

Exercise 9. Factor analysis

A friend proposes to improve the factor analysis model by working with correlated latent variables. The
proposed model is

p(h; C) = N (h; 0,C) p(v|h; F,ΨΨΨ, c) = N (v; Fh + c,ΨΨΨ) (23)

where C is some covariance matrix, and the other variables are defined as in the lecture slides. N (x;µµµ,ΣΣΣ)
denotes the pdf of a Gaussian with mean µµµ and covariance matrix ΣΣΣ.

(a) What is marginal distribution of the visibles p(v;θ) where θ stands for the parameters C,F, c,ΨΨΨ?

14 ©Michael U. Gutmann, UoE, 2018-23 CC BY 4.0 cb

https://en.wikipedia.org/wiki/Additive_smoothing
https://creativecommons.org/licenses/by/4.0/


Solution. The model specifications are equivalent to the following data generating pro-
cess:

h ∼ N (h; 0,C) ε ∼ N (ε; 0,ΨΨΨ) v = Fh + c + ε (S.103)

Recall the basic result on the distribution of linear transformations of Gaussians: if x has
density N (x;µµµx,Cx), z density N (z;µµµz,Cz), and x ⊥⊥ z then y = Ax + z has density

N (y; Aµµµx +µµµz,ACxA
> + Cz).

It thus follows that v is Gaussian with mean µµµ and covariance ΣΣΣ,

µµµ = FE[h]︸︷︷︸
0

+c + E[ε]︸︷︷︸
0

(S.104)

= c (S.105)

ΣΣΣ = FV[h]F> + V[ε] (S.106)

= FCF> + ΨΨΨ. (S.107)

(b) Assume that the singular value decomposition of C is given by

C = EΛE> (24)

where Λ = diag(λ1, . . . , λD) is a diagonal matrix containing the eigenvalues, and E is a orthonor-
mal matrix containing the corresponding eigenvectors. The matrix square root of C is the matrix
M such that

MM = C, (25)

and we denote it by C1/2. Show that the matrix square root of C equals

C1/2 = E diag(
√
λ1, . . . ,

√
λD)E>. (26)

Solution. We verify that C1/2C1/2 = C:

C1/2C1/2 = E diag(
√
λ1, . . . ,

√
λD)E>E diag(

√
λ1, . . . ,

√
λD)E> (S.108)

= E diag(
√
λ1, . . . ,

√
λD) I diag(

√
λ1, . . . ,

√
λD)E> (S.109)

= E diag(
√
λ1, . . . ,

√
λD) diag(

√
λ1, . . . ,

√
λD)E> (S.110)

= E diag(λ1, . . . , λD)E> (S.111)

= EΛE> (S.112)

= C (S.113)

(c) Show that the proposed factor analysis model is equivalent to the original factor analysis model

p(h; I) = N (h; 0, I) p(v|h; F̃,ΨΨΨ, c) = N (v; F̃h + c,ΨΨΨ) (27)

with F̃ = FC1/2, so that the extra parameters given by the covariance matrix C are actually
redundant and nothing is gained with the richer parametrisation.
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Solution. We verify that the model has the same distribution for the visibles. As before
E[v] = c, and the covariance matrix is

V[v] = F̃IF̃> + ΨΨΨ (S.114)

= FC1/2C1/2F> + ΨΨΨ (S.115)

= FCF> + ΨΨΨ (S.116)

where we have used that C1/2 is a symmetric matrix. This means that the correlation
between the h can be absorbed into the factor matrix F and the set of pdfs defined by the
proposed model equals the set of pdfs of the original factor analysis model.

Another way to see the result is to consider the data generating process and noting that we
can sample h from N (h; 0,C) by first sampling h′ from N (h′; 0, I) and then transforming
the sample by C1/2,

h ∼ N (h; 0,C) ⇐⇒ h = C1/2h′ h′ ∼ N (h′; 0, I). (S.117)

This follows again from the basic properties of linear transformations of Gaussians, i.e.

V(C1/2h′) = C1/2V(h′)(C1/2)> = C1/2IC1/2 = C

and E(C1/2h′) = C1/2E(h′) = 0.

To generate samples from the proposed factor analysis model, we would thus proceed as
follows:

h′ ∼ N (h′; 0, I) ε ∼ N (ε; 0,ΨΨΨ) v = F(C1/2h′) + c + ε (S.118)

But the term
v = F(C1/2h′) + c + ε

can be written as
v = (FC1/2)h′ + c + ε = F̃h′ + c + ε

and since h′ follows N (h′; 0, I), we are back at the original factor analysis model.

Exercise 10. Independent component analysis

(a) Whitening corresponds to linearly transforming a random variable x (or the corresponding data)
so that the resulting random variable z has an identity covariance matrix, i.e.

z = Vx with V[x] = C and V[z] = I.

The matrix V is called the whitening matrix. We do not make a distributional assumption on x,
in particular x may or may not be Gaussian.

Given the eigenvalue decomposition C = EΛE>, show that

V = diag(λ
−1/2
1 , . . . , λ

−1/2
d )E> (28)

is a whitening matrix.
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Solution. From V[z] = V[Vx] = VV[x]V>, it follows that

V[z] = VV[x]V> (S.119)

= VCV> (S.120)

= VEΛE>V> (S.121)

= diag(λ
−1/2
1 , . . . , λ

−1/2
d )E>EΛE>V> (S.122)

= diag(λ
−1/2
1 , . . . , λ

−1/2
d )ΛE>V> (S.123)

where we have used that E>E = I. Since

V> =
[
diag(λ

−1/2
1 , . . . , λ

−1/2
d )E>

]>
= E diag(λ

−1/2
1 , . . . , λ

−1/2
d )

we further have

V[z] = diag(λ
−1/2
1 , . . . , λ

−1/2
d )ΛE>E diag(λ

−1/2
1 , . . . , λ

−1/2
d ) (S.124)

= diag(λ
−1/2
1 , . . . , λ

−1/2
d )Λ diag(λ

−1/2
1 , . . . , λ

−1/2
d ) (S.125)

= diag(λ
−1/2
1 , . . . , λ

−1/2
d ) diag(λ1, . . . , λd) diag(λ

−1/2
1 , . . . , λ

−1/2
d ) (S.126)

= I, (S.127)

so that V is indeed a valid whitening matrix. Note that whitening matrices are not unique.
For example,

Ṽ = E diag(λ
−1/2
1 , . . . , λ

−1/2
d )E>

is also a valid whitening matrix. More generally, if V is a whitening matrix, then RV is
also a whitening matrix when R is an orthonormal matrix. This is because

V[RVx] = RV[Vx]R> = RIR> = I

where we have used that V is a whitening matrix so that Vx has identity covariance
matrix.

(b) Consider the ICA model

v = Ah, h ∼ ph(h), ph(h) =

D∏
i=1

ph(hi), (29)

where the matrix A is invertible and the hi are independent random variables of mean zero and
variance one. Let V be a whitening matrix for v. Show that z = Vv follows the ICA model

z = Ãh, h ∼ ph(h), ph(h) =

D∏
i=1

ph(hi), (30)

where Ã is an orthonormal matrix.

Solution. If v follows the ICA model, we have

z = Vv (S.128)

= VAh (S.129)

= Ãh (S.130)
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with Ã = VA. By the whitening operation, the covariance matrix of z is identity, so that

I = V(z) = ÃV(h)Ã>. (S.131)

By the ICA model, V(h) = I, so that Ã must satisfy

I = ÃÃ>, (S.132)

which means that Ã is orthonormal.

In the original ICA model, the number of parameters is given by the number of elements
of the matrix A, which is D2 if v is D-dimensional. An orthogonal matrix contains D(D−
1)/2 degrees of freedom (see e.g. https://en.wikipedia.org/wiki/Orthogonal_matrix), so
that we can think that whitening “solves half of the ICA problem”. Since whitening
is a relatively simple standard operation, many algorithms, e.g. “fastICA”, first reduce
the complexity of the estimation problem by whitening the data. Moreover, due to the
properties of the orthogonal matrix, the log-likelihood for the ICA model also simplifies
for whitened data: The log-likelihood for ICA model without whitening is

`(B) =
n∑
i=1

D∑
j=1

log ph(bjvi) + n log |det B| (S.133)

where B = A−1. If we first whiten the data, the log-likelihood becomes

`(B̃) =

n∑
i=1

D∑
j=1

log ph(b̃jzi) + n log | det B̃| (S.134)

where B̃ = Ã−1 = Ã> since Ã is an orthogonal matrix. This means B̃−1 = Ã = B̃> and
B̃ is an orthogonal matrix. Hence det B̃ = 1, and the log det term is zero. Hence, the
log-likelihood on whitened data simplifies to

`(B̃) =
n∑
i=1

D∑
j=1

log ph(b̃jzi). (S.135)

While the log-likelihood takes a simpler form, the optimisation problem is now a con-
strained optimisation problem: B̃ is constrained to be orthonormal. For further informa-
tion, see e.g. Chapter 9 of Independent Component Analysis by Hyvärinen, Karhunen, and
Oja.

Exercise 11. Maximum likelihood estimation and unnormalised models

Consider the Ising model for two binary random variables (x1, x2),

p(x1, x2; θ) ∝ exp (θx1x2 + x1 + x2) , xi ∈ {−1, 1},

(a) Compute the partition function Z(θ).

Solution. The definition of the partition function is

Z(θ) =
∑
{−1,1}2

exp (θx1x2 + x1 + x2) . (S.136)

18 ©Michael U. Gutmann, UoE, 2018-23 CC BY 4.0 cb

https://en.wikipedia.org/wiki/Orthogonal_matrix
https://en.wikipedia.org/wiki/FastICA
https://creativecommons.org/licenses/by/4.0/


where have have to sum over (x1, x2) ∈ {−1, 1}2 = {(−1, 1), (1, 1), (1,−1) (−1−1)}. This
gives

Z(θ) = exp(−θ − 1 + 1) + exp(θ + 2) + exp(−θ + 1− 1) + exp(θ − 2) (S.137)

= 2 exp(−θ) + exp(θ + 2) + exp(θ − 2) (S.138)

(b) The figure below shows the graph of f(θ) = ∂ logZ(θ)
∂θ .

Assume you observe three data points (x1, x2) equal to (−1,−1), (−1, 1), and (1,−1). Using the
figure, what is the maximum likelihood estimate of θ? Justify your answer.

-4 -3 -2 -1 0 1 2 3 4
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Solution. Denoting the i-th observed data point by (xi1, x
i
2), the log-likelihood is

`(θ) =
n∑
i=1

log p(xi1, x
i
2; θ) (S.139)

Inserting the definition of the p(x1, x2; θ) yields

`(θ) =
n∑
i=1

[
θxi1x

i
2 + xi1 + xi2

]
− n logZ(θ) (S.140)

= θ
n∑
i=1

[
xi1x

i
2

]
+

n∑
i=1

[
xi1 + xi2

]
− n logZ(θ) (S.141)

Its derivative with respect to the θ is

∂`(θ)

∂θ
=

n∑
i=1

[
xi1x

i
2

]
− n∂ logZ(θ)

∂θ
(S.142)

=

n∑
i=1

[
xi1x

i
2

]
− nf(θ) (S.143)

Setting it to zero yields

1

n

n∑
i=1

[
xi1x

i
2

]
= f(θ) (S.144)

An alternative approach is to start with the more general relationship that relates the
gradient of the partition function to the gradient of the log unnormalised model. For
example, if

p(x,θ) =
φ(x;θ)

Z(θ)
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we have

`(θ) =
n∑
i=1

log p(xi;θ) (S.145)

=
n∑
i=1

log φ(xi;θ)− n logZ(θ) (S.146)

Setting the derivative to zero gives,

1

n

n∑
i=1

∇θ log φ(xi;θ) = ∇θ logZ(θ)

In either case, numerical evaluation of 1/n
∑n

i=1 x
i
1x
i
2 gives

1

n

n∑
i=1

[
xi1x

i
2

]
=

1

3
(1− 1− 1) (S.147)

= −1

3
(S.148)

From the graph, we see that f(θ) takes on the value −1/3 for θ = −1, which is the desired
MLE.
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