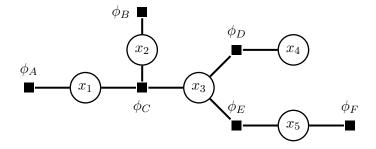
Exercises for the tutorials: 1(a-c) and 3(a-b).

The other exercises are for self-study and exam preparation. All material is examinable unless otherwise mentioned.

## Exercise 1. Sum-product message passing

We here re-consider the factor tree from the lecture on exact inference.



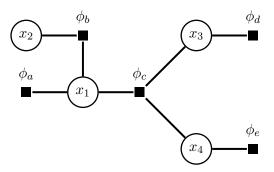
Let all variables be binary,  $x_i \in \{0,1\}$ , and the factors be defined as follows:

|                                  | $x_1$ | $x_2$ | $x_3$ | $\phi_C$       | -                |       |          |                  |       |          |       |          |
|----------------------------------|-------|-------|-------|----------------|------------------|-------|----------|------------------|-------|----------|-------|----------|
|                                  | 0     | 0     | 0     | 4 2            | $\overline{x_3}$ | $x_4$ | $\phi_D$ | $\overline{x_3}$ | $x_5$ | $\phi_E$ |       |          |
| $x_1  \phi_A \qquad x_2  \phi_B$ | 0     | 1     | 0     | $\overline{2}$ | 0                | 0     | 8        | 0                | 0     | 3        | $x_5$ | $\phi_F$ |
| 0  2  0  4                       | 1     | 1     | 0     | 6              | 1                | 0     | 2        | 1                | 0     | 6        | 0     | 1        |
| 1  4  1  4                       | 0     | 0     | 1     | 2              | 0                | 1     | 2        | 0                | 1     | 6        | 1     | 8        |
|                                  | 1     | 0     | 1     | 6              | 1                | 1     | 6        | 1                | 1     | 3        | -     |          |
|                                  | 0     | 1     | 1     | 6              |                  |       |          | -                |       |          |       |          |
|                                  | 1     | 1     | 1     | 4              | _                |       |          |                  |       |          |       |          |

- (a) Mark the graph with arrows indicating all messages that need to be computed for the computation of  $p(x_1)$ .
- (b) Compute the messages that you have identified.
  - Assuming that the computation of the messages is scheduled according to a common clock, group the messages together so that all messages in the same group can be computed in parallel during a clock cycle.
- (c) What is  $p(x_1 = 1)$ ?
- (d) Draw the factor graph corresponding to  $p(x_1, x_3, x_4, x_5 | x_2 = 1)$  and provide the numerical values for all factors.
- (e) Compute  $p(x_1 = 1|x_2 = 1)$ , re-using messages that you have already computed for the evaluation of  $p(x_1 = 1)$ .

### Exercise 2. Sum-product message passing

The following factor graph represents a Gibbs distribution over four binary variables  $x_i \in \{0, 1\}$ .



The factors  $\phi_a, \phi_b, \phi_d$  are defined as follows:

|       |          | $x_1$ | $x_2$ | $\phi_b$ |  |       |   |
|-------|----------|-------|-------|----------|--|-------|---|
| $x_1$ | $\phi_a$ | 0     | 0     | 5        |  | $x_3$ | ¢ |
| 0     | 2        | 1     | 0     | 2        |  | 0     | 1 |
| 1     | 1        | 0     | 1     | 2        |  | 1     | 2 |
|       |          | 1     | 1     | 6        |  |       |   |

and  $\phi_c(x_1, x_3, x_4) = 1$  if  $x_1 = x_3 = x_4$ , and is zero otherwise.

For all questions below, justify your answer:

- (a) Compute the values of  $\mu_{x_2 \to \phi_b}(x_2)$  for  $x_2 = 0$  and  $x_2 = 1$ .
- (b) Assume the message  $\mu_{x_4 \to \phi_c}(x_4)$  equals

$$\mu_{x_4 \to \phi_c}(x_4) = \begin{cases} 1 & \text{if } x_4 = 0\\ 3 & \text{if } x_4 = 1 \end{cases}$$

Compute the values of  $\phi_e(x_4)$  for  $x_4 = 0$  and  $x_4 = 1$ .

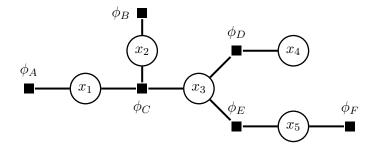
- (c) Compute the values of  $\mu_{\phi_c \to x_1}(x_1)$  for  $x_1 = 0$  and  $x_1 = 1$ .
- (d) The message  $\mu_{\phi_b \to x_1}(x_1)$  equals

$$\mu_{\phi_b \to x_1}(x_1) = \begin{cases} 7 & \text{if } x_1 = 0\\ 8 & \text{if } x_1 = 1 \end{cases}$$

What is the probability that  $x_1 = 1$ , i.e.  $p(x_1 = 1)$ ?

### Exercise 3. Max-sum message passing

We here compute most probable states for the factor graph and factors below.



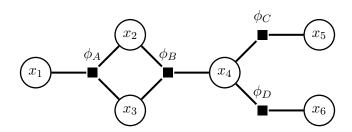
Let all variables be binary,  $x_i \in \{0, 1\}$ , and the factors be defined as follows:

|                                  | $\overline{x_1}$ | $x_2$ | $x_3$ | $\phi_C$ | -                |       |          |                  |       |          |       |          |
|----------------------------------|------------------|-------|-------|----------|------------------|-------|----------|------------------|-------|----------|-------|----------|
|                                  | 0<br>1           | 0 0   | 0 0   | 4 2      | $\overline{x_3}$ | $x_4$ | $\phi_D$ | $\overline{x_3}$ | $x_5$ | $\phi_E$ |       |          |
| $x_1  \phi_A \qquad x_2  \phi_B$ | 0                | 1     | 0     | 2        | 0                | 0     | 8        | 0                | 0     | 3        | $x_5$ | $\phi_F$ |
| 0 	 2 	 0 	 4                    | 1                | 1     | 0     | 6        | 1                | 0     | 2        | 1                | 0     | 6        | 0     | 1        |
| 1  4  1  4                       | 0                | 0     | 1     | 2        | 0                | 1     | 2        | 0                | 1     | 6        | 1     | 8        |
|                                  | 1                | 0     | 1     | 6        | 1                | 1     | 6        | 1                | 1     | 3        | -     |          |
|                                  | 0                | 1     | 1     | 6        |                  |       |          | -                |       |          |       |          |
|                                  | _1               | 1     | 1     | 4        | _                |       |          |                  |       |          |       |          |

- (a) Will we need to compute the normalising constant Z to determine  $\operatorname{argmax}_{\mathbf{x}} p(x_1, \dots, x_5)$ ?
- (b) Compute  $\operatorname{argmax}_{x_1,x_2,x_3} p(x_1,x_2,x_3|x_4=0,x_5=0)$  via max-sum message passing.
- (c) Compute  $\operatorname{argmax}_{x_1,\dots,x_5} p(x_1,\dots,x_5)$  via max-sum message passing with  $x_1$  as root.
- (d) Compute  $\operatorname{argmax}_{x_1,\dots,x_5} p(x_1,\dots,x_5)$  via max-sum message passing with  $x_3$  as root.

# Exercise 4. Choice of elimination order in factor graphs

Consider the following factor graph, which contains a loop:



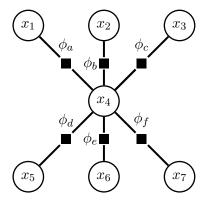
Let all variables be binary,  $x_i \in \{0, 1\}$ , and the factors be defined as follows:

| $x_1$ | $x_2$ | $x_3$ | $\phi_A$ | $x_2$ | $x_3$ | $x_4$ | $\phi_B$ |
|-------|-------|-------|----------|-------|-------|-------|----------|
| 0     | 0     | 0     | 4        | 0     | 0     | 0     | 2        |
| 1     | 0     | 0     | 2        | 1     | 0     | 0     | 2        |
| 0     | 1     | 0     | 2        | 0     | 1     | 0     | 4        |
| 1     | 1     | 0     | 6        | 1     | 1     | 0     | 2        |
| 0     | 0     | 1     | 2        | 0     | 0     | 1     | 6        |
| 1     | 0     | 1     | 6        | 1     | 0     | 1     | 8        |
| 0     | 1     | 1     | 6        | 0     | 1     | 1     | 4        |
| 1     | 1     | 1     | 4        | 1     | 1     | 1     | 2        |

- (a) Draw the factor graph corresponding to  $p(x_2, x_3, x_4, x_5 \mid x_1 = 0, x_6 = 1)$  and give the tables defining the new factors  $\phi_A^{x_1=0}(x_2, x_3)$  and  $\phi_D^{x_6=1}(x_4)$  that you obtain.
- (b) Find  $p(x_2 \mid x_1 = 0, x_6 = 1)$  using the elimination ordering  $(x_4, x_5, x_3)$ :
  - (i) Draw the graph for  $p(x_2, x_3, x_5 \mid x_1 = 0, x_6 = 1)$  by marginalising  $x_4$  Compute the table for the new factor  $\tilde{\phi}_4(x_2, x_3, x_5)$
  - (ii) Draw the graph for  $p(x_2, x_3 \mid x_1 = 0, x_6 = 1)$  by marginalising  $x_5$ Compute the table for the new factor  $\tilde{\phi}_{45}(x_2, x_3)$
  - (iii) Draw the graph for  $p(x_2 \mid x_1 = 0, x_6 = 1)$  by marginalising  $x_3$  Compute the table for the new factor  $\tilde{\phi}_{453}(x_2)$
- (c) Now determine  $p(x_2 \mid x_1 = 0, x_6 = 1)$  with the elimination ordering  $(x_5, x_4, x_3)$ :
  - (i) Draw the graph for  $p(x_2, x_3, x_4, | x_1 = 0, x_6 = 1)$  by marginalising  $x_5$  Compute the table for the new factor  $\tilde{\phi}_5(x_4)$
  - (ii) Draw the graph for  $p(x_2, x_3 \mid x_1 = 0, x_6 = 1)$  by marginalising  $x_4$  Compute the table for the new factor  $\tilde{\phi}_{54}(x_2, x_3)$
  - (iii) Draw the graph for  $p(x_2 \mid x_1 = 0, x_6 = 1)$  by marginalising  $x_3$  Compute the table for the new factor  $\tilde{\phi}_{543}(x_2)$
- (d) Which variable ordering,  $(x_4, x_5, x_3)$  or  $(x_5, x_4, x_3)$  do you prefer?

#### Exercise 5. Choice of elimination order in factor graphs

We would like to compute the marginal  $p(x_1)$  by variable elimination for a joint pmf represented by the following factor graph. All variables  $x_i$  can take K different values.



- (a) A friend proposes the elimination order  $x_4, x_5, x_6, x_7, x_3, x_2$ , i.e. to do  $x_4$  first and  $x_2$  last. Explain why this is computationally inefficient.
- (b) Propose an elimination ordering that achieves  $O(K^2)$  computational cost per variable elimination and explain why it does so.