
Probabilistic Modelling and Reasoning

Solutions 4
Spring 2023

Michael Gutmann

Exercises for the tutorials: 1(a-c) and 3(a-b).

The other exercises are for self-study and exam preparation. All material is examinable unless otherwise
mentioned.

Exercise 1. Sum-product message passing

We here re-consider the factor tree from the lecture on exact inference.

φA
x1

φC

x2

φB

x3

φD
x4

φE
x5

φF

Let all variables be binary, xi ∈ {0, 1}, and the factors be defined as follows:

x1 φA

0 2
1 4

x2 φB

0 4
1 4

x1 x2 x3 φC

0 0 0 4
1 0 0 2
0 1 0 2
1 1 0 6
0 0 1 2
1 0 1 6
0 1 1 6
1 1 1 4

x3 x4 φD

0 0 8
1 0 2
0 1 2
1 1 6

x3 x5 φE

0 0 3
1 0 6
0 1 6
1 1 3

x5 φF

0 1
1 8

(a) Mark the graph with arrows indicating all messages that need to be computed for the computation
of p(x1).

Solution.

φA
x1

φC

x2

φB

x3

φD
x4

φE
x5

φF

→
←
↓

↓

←

←
←

←
← ←

(b) Compute the messages that you have identified.

Assuming that the computation of the messages is scheduled according to a common clock, group
the messages together so that all messages in the same group can be computed in parallel during a
clock cycle.

1 ©Michael U. Gutmann, UoE, 2018-23 CC BY 4.0 cb

https://creativecommons.org/licenses/by/4.0/


Solution. Since the variables are binary, each message can be represented as a two-
dimensional vector. We use the convention that the first element of the vector corresponds
to the message for xi = 0 and the second element to the message for xi = 1. For example,

µφA→x1µφA→x1µφA→x1 =

(
2
4

)
(S.1)

means that the message µφA→x1(x1) equals 2 for x1 = 0, i.e. µφA→x1(0) = 2.

The following figure shows a grouping (scheduling) of the computation of the messages.

φA
x1

φC

x2

φB

x3

φD
x4

φE
x5

φF

[1]
→

←
[5]

[2]↓

[1]↓

←
[4]

[2
]
←

[1]
←

←
[3]

←
[2]

←
[1]

Clock cycle 1:

µφA→x1µφA→x1µφA→x1 =

(
2
4

)
µφB→x2µφB→x2µφB→x2 =

(
4
4

)
µx4→φDµx4→φDµx4→φD =

(
1
1

)
µφF→x5µφF→x5µφF→x5 =

(
1
8

)
(S.2)

Clock cycle 2:

µx2→φCµx2→φCµx2→φC = µφB→x2µφB→x2µφB→x2 =

(
4
4

)
µx5→φEµx5→φEµx5→φE = µφF→x5µφF→x5µφF→x5 =

(
1
8

)
(S.3)

Message µφD→x3 is defined as

µφD→x3(x3) =
∑
x4

φD(x3, x4)µx4→φD(x4) (S.4)

so that

µφD→x3(0) =
1∑

x4=0

φD(0, x4)µx4→φD(x4) (S.5)

= φD(0, 0)µx4→φD(0) + φD(0, 1)µx4→φD(1) (S.6)

= 8 · 1 + 2 · 1 (S.7)

= 10 (S.8)

µφD→x3(1) =
1∑

x4=0

φD(1, x4)µx4→φD(x4) (S.9)

= φD(1, 0)µx4→φD(0) + φD(1, 1)µx4→φD(1) (S.10)

= 2 · 1 + 6 · 1 (S.11)

= 8 (S.12)

2 ©Michael U. Gutmann, UoE, 2018-23 CC BY 4.0 cb

https://creativecommons.org/licenses/by/4.0/


and thus

µφD→x3µφD→x3µφD→x3 =

(
10
8

)
. (S.13)

The above computations can be written more compactly in matrix notation. Let φDφDφD be
the matrix that contains the outputs of φD(x3, x4)

φDφDφD =

(
φD(x3 = 0, x4 = 0) φD(x3 = 0, x4 = 1)
φD(x3 = 1, x4 = 0) φD(x3 = 1, x4 = 1)

)
=

(
8 2
2 6

)
. (S.14)

We can then write µφD→x3µφD→x3µφD→x3 in terms of a matrix vector product,

µφD→x3µφD→x3µφD→x3 = φDφDφDµx4→φDµx4→φDµx4→φD . (S.15)

Clock cycle 3:
Representing the factor φE as matrix φEφEφE ,

φEφEφE =

(
φE(x3 = 0, x5 = 0) φE(x3 = 0, x5 = 1)
φE(x3 = 1, x5 = 0) φE(x3 = 1, x5 = 1)

)
=

(
3 6
6 3

)
, (S.16)

we can write

µφE→x3(x3) =
∑
x5

φE(x3, x5)µx5→φE (x5) (S.17)

as a matrix vector product,

µφE→x3µφE→x3µφE→x3 = φEφEφEµx5→φEµx5→φEµx5→φE (S.18)

=

(
3 6
6 3

)(
1
8

)
(S.19)

=

(
51
30

)
. (S.20)

Clock cycle 4:
Variable node x3 has received all incoming messages, and can thus output µx3→φC ,

µx3→φC (x3) = µφD→x3(x3)µφE→x3(x3). (S.21)

Using � to denote element-wise multiplication of two vectors, we have

µx3→φCµx3→φCµx3→φC = µφD→x3µφD→x3µφD→x3 �µφE→x3µφE→x3µφE→x3 (S.22)

=

(
10
8

)
�
(

51
30

)
(S.23)

=

(
510
240

)
. (S.24)

Clock cycle 5:
Factor node φC has received all incoming messages, and can thus output µφC→x1 ,

µφC→x1(x1) =
∑
x2,x3

φC(x1, x2, x3)µx2→φC (x2)µx3→φC (x3). (S.25)

3 ©Michael U. Gutmann, UoE, 2018-23 CC BY 4.0 cb

https://creativecommons.org/licenses/by/4.0/


Writing out the sum for x1 = 0 and x1 = 1 gives

µφC→x1(0) =
∑
x2,x3

φC(0, x2, x3)µx2→φC (x2)µx3→φC (x3) (S.26)

=φC(0, x2, x3)µx2→φC (x2)µx3→φC (x3) |(x2,x3)=(0,0) + (S.27)

φC(0, x2, x3)µx2→φC (x2)µx3→φC (x3) |(x2,x3)=(1,0) + (S.28)

φC(0, x2, x3)µx2→φC (x2)µx3→φC (x3) |(x2,x3)=(0,1) + (S.29)

φC(0, x2, x3)µx2→φC (x2)µx3→φC (x3) |(x2,x3)=(1,1) (S.30)

=4 · 4 · 510+ (S.31)

2 · 4 · 510+ (S.32)

2 · 4 · 240+ (S.33)

6 · 4 · 240 (S.34)

=19920 (S.35)

µφC→x1(1) =
∑
x2,x3

φC(1, x2, x3)µx2→φC (x2)µx3→φC (x3) (S.36)

=φC(1, x2, x3)µx2→φC (x2)µx3→φC (x3) |(x2,x3)=(0,0) + (S.37)

φC(1, x2, x3)µx2→φC (x2)µx3→φC (x3) |(x2,x3)=(1,0) + (S.38)

φC(1, x2, x3)µx2→φC (x2)µx3→φC (x3) |(x2,x3)=(0,1) + (S.39)

φC(1, x2, x3)µx2→φC (x2)µx3→φC (x3) |(x2,x3)=(1,1) (S.40)

=2 · 4 · 510+ (S.41)

6 · 4 · 510+ (S.42)

6 · 4 · 240+ (S.43)

4 · 4 · 240 (S.44)

=25920 (S.45)

and hence

µφC→x1µφC→x1µφC→x1 =

(
19920
25920

)
(S.46)

After step 5, variable node x1 has received all incoming messages and the marginal can be
computed.

In addition to the messages needed for computation of p(x1) one can compute all messages
in the graph in five clock cycles, see Figure 1. This means that all marginals, as well as
the joints of those variables sharing a factor node, are available after five clock cycles.

(c) What is p(x1 = 1)?

Solution. We compute the marginal p(x1) as

p(x1) ∝ µφA→x1(x1)µφC→x1(x1) (S.47)

4 ©Michael U. Gutmann, UoE, 2018-23 CC BY 4.0 cb

https://creativecommons.org/licenses/by/4.0/


φA

x1
φC

x2

φB

x3

φD

x4

φE

x5
φF

[1]
→

←
[5]

[2]
→ [2]↓ ↑[5]

[1]↓

←
[4]

[3]
→

[2
]
←
→
[4
]

[1]
←
→
[5]

←
[3]

[4]→

←
[2]

[5]
→

←
[1]

Figure 1: Answer to Exercise 1 Question (b): Computing all messages in five clock cycles. If
we also computed the messages toward the leaf factor nodes, we needed six cycles, but they are
not necessary for computation of the marginals so they are omitted.

which is in vector notation (
p(x1 = 0)
p(x1 = 1)

)
∝ µφA→x1µφA→x1µφA→x1 �µφC→x1µφC→x1µφC→x1 (S.48)

∝
(

2
4

)
�
(

19920
25920

)
(S.49)

∝
(

39840
103680

)
. (S.50)

Normalisation gives (
p(x1 = 0)
p(x1 = 1)

)
=

1

39840 + 103680

(
39840
103680

)
(S.51)

=

(
0.2776
0.7224

)
(S.52)

so that p(x1 = 1) = 0.7224.

Note the relatively large numbers in the messages that we computed. In other cases, one
may obtain very small ones depending on the scale of the factors. This can cause numerical
issues that can be addressed by working in the logarithmic domain.

(d) Draw the factor graph corresponding to p(x1, x3, x4, x5|x2 = 1) and provide the numerical values
for all factors.

Solution. The pmf represented by the original factor graph is

p(x1, . . . , x5) ∝ φA(x1)φB(x2)φC(x1, x2, x3)φD(x3, x4)φE(x3, x5)φF (x5)

5 ©Michael U. Gutmann, UoE, 2018-23 CC BY 4.0 cb

https://creativecommons.org/licenses/by/4.0/


The conditional p(x1, x3, x4, x5|x2 = 1) is proportional to p(x1, . . . , x5) with x2 fixed to
x2 = 1, i.e.

p(x1, x3, x4, x5|x2 = 1) ∝ p(x1, x2 = 1, x3, x4, x5) (S.53)

∝ φA(x1)φB(x2 = 1)φC(x1, x2 = 1, x3)φD(x3, x4)φE(x3, x5)φF (x5)
(S.54)

∝ φA(x1)φ
x2
C (x1, x3)φD(x3, x4)φE(x3, x5)φF (x5) (S.55)

where φx2C (x1, x3) = φC(x1, x2 = 1, x3). The numerical values of φx2C (x1, x3) can be read
from the table defining φC(x1, x2, x3), extracting those rows where x2 = 1,

x1 x2 x3 φC

0 0 0 4
1 0 0 2

→ 0 1 0 2
→ 1 1 0 6

0 0 1 2
1 0 1 6

→ 0 1 1 6
→ 1 1 1 4

so that

x1 x3 φx2C

0 0 2
1 0 6
0 1 6
1 1 4

The factor graph for p(x1, x3, x4, x5|x2 = 1) is shown below. Factor φB has disappeared
since it only depended on x2 and thus became a constant. Factor φC is replaced by φx2C
defined above. The remaining factors are the same as in the original factor graph.

φA
x1

φx2C

x3

φD
x4

φE
x5

φF

(e) Compute p(x1 = 1|x2 = 1), re-using messages that you have already computed for the evaluation
of p(x1 = 1).

Solution. The message µφA→x1 is the same as in the original factor graph and µx3→φ
x2
C

=

µx3→φC . This is because the outgoing message from x3 corresponds to the effective factor
obtained by summing out all variables in the sub-trees attached to x3 (without the φx2C
branch), and these sub-trees do not depend on x2.

The message µφx2C →x1
needs to be newly computed. We have

µφx2C →x1
(x1) =

∑
x3

φx2C (x1, x3)µx3→φ
x2
C

(S.56)

6 ©Michael U. Gutmann, UoE, 2018-23 CC BY 4.0 cb

https://creativecommons.org/licenses/by/4.0/


or in vector notation

µφx2C →x1
µφx2C →x1
µφx2C →x1

= φx2Cφ
x2
Cφ
x2
C µx3→φ

x2
C

µx3→φ
x2
C

µx3→φ
x2
C

(S.57)

=

(
φx2C (x1 = 0, x3 = 0) φx2C (x1 = 0, x3 = 1)
φx2C (x1 = 1, x3 = 0) φx2C (x1 = 1, x3 = 1)

)
µx3→φ

x2
C

µx3→φ
x2
C

µx3→φ
x2
C

(S.58)

=

(
2 6
6 4

)(
510
240

)
(S.59)

=

(
2460
4020

)
(S.60)

We thus obtain for the marginal posterior of x1 given x2 = 1:(
p(x1 = 0|x2 = 1)
p(x1 = 1|x2 = 1)

)
∝ µφA→x1µφA→x1µφA→x1 �µφx2C →x1µφx2C →x1

µφx2C →x1
(S.61)

∝
(

2
4

)
�
(

2460
4020

)
(S.62)

∝
(

4920
16080

)
. (S.63)

Normalisation gives (
p(x1 = 0|x2 = 1)
p(x1 = 1|x2 = 1)

)
=

(
0.2343
0.7657

)
(S.64)

and thus p(x1 = 1|x2 = 1) = 0.7657. The posterior probability is slightly larger than the
prior probability, p(x1 = 1) = 0.7224.

Exercise 2. Sum-product message passing

The following factor graph represents a Gibbs distribution over four binary variables xi ∈ {0, 1}.

φa
x1

φb
x2

φc

x3

x4

φd

φe

The factors φa, φb, φd are defined as follows:

x1 φa

0 2
1 1

x1 x2 φb

0 0 5
1 0 2
0 1 2
1 1 6

x3 φd

0 1
1 2

7 ©Michael U. Gutmann, UoE, 2018-23 CC BY 4.0 cb

https://creativecommons.org/licenses/by/4.0/


and φc(x1, x3, x4) = 1 if x1 = x3 = x4, and is zero otherwise.

For all questions below, justify your answer:

(a) Compute the values of µx2→φb
(x2) for x2 = 0 and x2 = 1.

Solution. Messages from leaf-variable nodes to factor nodes are equal to one, so that
µx2→φb(x2) = 1 for all x2.

(b) Assume the message µx4→φc(x4) equals

µx4→φc
(x4) =

{
1 if x4 = 0

3 if x4 = 1

Compute the values of φe(x4) for x4 = 0 and x4 = 1.

Solution. Messages from leaf-factors to their variable nodes are equal to the leaf-factors,
and variable nodes with single incoming messages copy the message. We thus have

µφe→x4(x4) = φe(x4) (S.65)

µx4→φc(x4) = µφe→x4(x4) (S.66)

and hence

φe(x4) =

{
1 if x4 = 0

3 if x4 = 1
(S.67)

(c) Compute the values of µφc→x1
(x1) for x1 = 0 and x1 = 1.

Solution. We first compute µx3→φc(x3):

µx3→φc(x3) = µφd→x3(x3) (S.68)

=

{
1 if x3 = 0

2 if x3 = 1
(S.69)

The desired message µφc→x1(x1) is by definition

µφc→x1(x1) =
∑
x3,x4

φc(x1, x3, x4)µx3→φc(x3)µx4→φc(x4) (S.70)

Since φc(x1, x3, x4) is only non-zero if x1 = x3 = x4, where it equals one, the computations
simplify:

µφc→x1(x1 = 0) = φc(0, 0, 0)µx3→φc(0)µx4→φc(0) (S.71)

= 1 · 1 · 1 (S.72)

= 1 (S.73)

µφc→x1(x1 = 1) = φc(1, 1, 1)µx3→φc(1)µx4→φc(1) (S.74)

= 1 · 2 · 3 (S.75)

= 6 (S.76)

8 ©Michael U. Gutmann, UoE, 2018-23 CC BY 4.0 cb

https://creativecommons.org/licenses/by/4.0/


(d) The message µφb→x1
(x1) equals

µφb→x1(x1) =

{
7 if x1 = 0

8 if x1 = 1

What is the probability that x1 = 1, i.e. p(x1 = 1)?

Solution. The unnormalised marginal p(x1) is given by the product of the three incoming
messages

p(x1) ∝ µφa→x1(x1)µφb→x1(x1)µφc→x1(x1) (S.77)

With

µφb→x1(x1) =
∑
x2

φb(x1, x2) (S.78)

it follows that

µφb→x1(x1 = 0) =
∑
x2

φb(0, x2) (S.79)

= 5 + 2 (S.80)

= 7 (S.81)

µφb→x1(x1 = 1) =
∑
x2

φb(1, x2) (S.82)

= 2 + 6 (S.83)

= 8 (S.84)

Hence, we obtain

p(x1 = 0) ∝ 2 · 7 · 1 = 14 (S.85)

p(x1 = 1) ∝ 1 · 8 · 6 = 48 (S.86)

and normalisation yields the desired result

p(x1 = 1) =
48

14 + 48
=

48

62
=

24

31
= 0.774 (S.87)

Exercise 3. Max-sum message passing

We here compute most probable states for the factor graph and factors below.

φA
x1

φC

x2

φB

x3

φD
x4

φE
x5

φF

9 ©Michael U. Gutmann, UoE, 2018-23 CC BY 4.0 cb

https://creativecommons.org/licenses/by/4.0/


Let all variables be binary, xi ∈ {0, 1}, and the factors be defined as follows:

x1 φA

0 2
1 4

x2 φB

0 4
1 4

x1 x2 x3 φC

0 0 0 4
1 0 0 2
0 1 0 2
1 1 0 6
0 0 1 2
1 0 1 6
0 1 1 6
1 1 1 4

x3 x4 φD

0 0 8
1 0 2
0 1 2
1 1 6

x3 x5 φE

0 0 3
1 0 6
0 1 6
1 1 3

x5 φF

0 1
1 8

(a) Will we need to compute the normalising constant Z to determine argmaxx p(x1, . . . , x5)?

Solution. This is not necessary since argmaxx p(x1, . . . , x5) = argmaxx cp(x1, . . . , x5)
for any constant c. Algorithmically, the backtracking algorithm is also invariant to any
scaling of the factors.

(b) Compute argmaxx1,x2,x3
p(x1, x2, x3|x4 = 0, x5 = 0) via max-sum message passing.

Solution. We first derive the factor graph and corresponding factors for p(x1, x2, x3|x4 =
0, x5 = 0).

For fixed values of x4, x5, the two variables are removed from the graph, and the fac-
tors φD(x3, x4) and φE(x3, x5) are reduced to univariate factors φx4D (x3) and φx5D (x3) by
retaining those rows in the table where x4 = 0 and x5 = 0, respectively:

x3 φx4D

0 8
1 2

x3 φx5E

0 3
1 6

Since both factors only depend on x3, they can be combined into a new factor φ̃(x3) by
element-wise multiplication.

x3 φ̃

0 24
1 12

Moreover, since we work with an unnormalised model, we can rescale the factor so that
the maximum value is one, so that

x3 φ̃

0 2
1 1

Factor φF (x5) is a constant for fixed value of x5 and can be ignored. The factor graph for
p(x1, x2, x3|x4 = 0, x5 = 0) thus is

10 ©Michael U. Gutmann, UoE, 2018-23 CC BY 4.0 cb

https://creativecommons.org/licenses/by/4.0/


φA
x1

φC

x2

φB

x3

φ̃

Let us fix x1 as root towards which we compute the messages. The messages that we need
to compute are shown in the following graph

φA
x1

φC

x2

φB

x3

φ̃→ ←↓

↓

← ←

Next, we compute the leaf (log) messages. We only have factor nodes as leaf nodes so that

λφA→x1 =

(
log φA(x1 = 0)
log φA(x1 = 1)

)
=

(
log 2
log 4

)
(S.88)

and similarly

λφB→x2 =

(
log φB(x2 = 0)
log φB(x2 = 1)

)
=

(
log 4
log 4

)
λφ̃→x3 =

(
log φ̃(x3 = 0)

log φ̃(x3 = 1)

)
=

(
log 2
log 1

)
(S.89)

Since the variable nodes x2 and x3 only have one incoming edge each, we obtain

λx2→φC = λφB→x2 =

(
log 4
log 4

)
λx3→φC = λφ̃→x3 =

(
log 2
log 1

)
(S.90)

The message λφC→x1(x1) equals

λφC→x1(x1) = max
x2,x3

log φC(x1, x2, x3) + λx2→φC (x2) + λx3→φC (x3) (S.91)

where we wrote the messages in non-vector notation to highlight their dependency on the
variables x2 and x3. We now have to consider all combinations of x2 and x3

x2 x3 log φC(x1 = 0, x2, x3)

0 0 log 4
1 0 log 2
0 1 log 2
1 1 log 6

x2 x3 log φC(x1 = 1, x2, x3)

0 0 log 2
1 0 log 6
0 1 log 6
1 1 log 4

Furthermore

x2 x3 λx2→φC (x2) + λx3→φC (x3)

0 0 log 4 + log 2 = log 8
1 0 log 4 + log 2 = log 8
0 1 log 4
1 1 log 4

11 ©Michael U. Gutmann, UoE, 2018-23 CC BY 4.0 cb

https://creativecommons.org/licenses/by/4.0/


Hence for x1 = 0, we have

x2 x3 log φC(x1 = 0, x2, x3) + λx2→φC (x2) + λx3→φC (x3)

0 0 log 4 + log 8 = log 32
1 0 log 2 + log 8 = log 16
0 1 log 2 + log 4 = log 8
1 1 log 6 + log 4 = log 24

The maximal value is log 32 and for backtracking, we also need to keep track of the argmax
which is here x̂2 = x̂3 = 0.

For x1 = 1, we have

x2 x3 log φC(x1 = 1, x2, x3) + λx2→φC (x2) + λx3→φC (x3)

0 0 log 2 + log 8 = log 16
1 0 log 6 + log 8 = log 48
0 1 log 6 + log 4 = log 24
1 1 log 4 + log 4 = log 16

The maximal value is log 48 and the argmax is (x̂2 = 1, x̂3 = 0).

So overall, we have

λφC→x1 =

(
λφC→x1(x1 = 0)
λφC→x1(x1 = 1)

)
=

(
log 32
log 48

)
(S.92)

and the argmax back-tracking function is

λ∗φC→x1(x1) =

{
(x̂2 = 0, x̂3 = 0) if x1 = 0

(x̂2 = 1, x̂3 = 0) if x1 = 1
(S.93)

We now have all incoming messages to the assigned root node x1. Ignoring the normalising
constant, we obtain

γ =

(
γ∗(x1 = 0)
γ∗(x1 = 1)

)
= λφA→x1 + λφC→x1 (S.94)

=

(
log 2
log 4

)
+

(
log 32
log 48

)
=

(
log 64
log 192

)
(S.95)

The value x1 for which γ∗(x1) is largest is thus x̂1 = 1. Plugging x̂1 = 1 into the back-
tracking function λ∗φC→x1(x1) gives

(x̂1, x̂2, x̂3) = argmax
x1,x2,x3

p(x1, x2, x3|x4 = 0, x5 = 0) = (1, 1, 0). (S.96)

In this low-dimensional example, we can verify the solution by computing the unnormalised
pmf for all combinations of x1, x2, x3. This is done in the following table where we start
with the table for φC and then multiply-in the further factors φA, φ̃ and φB.

x1 x2 x3 φC φCφA φCφAφ̃ φCφAφ̃φB

0 0 0 4 8 16 16 · 4
1 0 0 2 8 16 16 · 4
0 1 0 2 4 8 8 · 4
1 1 0 6 24 48 48 · 4
0 0 1 2 4 4 4 · 4
1 0 1 6 24 24 24 · 4
0 1 1 6 12 12 12 · 4
1 1 1 4 16 16 16 · 4

12 ©Michael U. Gutmann, UoE, 2018-23 CC BY 4.0 cb

https://creativecommons.org/licenses/by/4.0/


For example, for the column φcφA, we multiply each value of φC(x1, x2, x3) by φA(x1), so
that the rows with x1 = 0 get multiplied by 2, and the rows with x1 = 1 by 4.

The maximal value in the final column is achieved for x1 = 1, x2 = 1, x3 = 0, in line with
the result above (and 48 · 4 = 192). Since φB(x2) is a constant, being equal to 4 for all
values of x2, we could have ignored it in the computation. The formal reason for this is
that since the model is unnormalised, we are allowed to rescale each factor by an arbitrary
(factor-dependent) constant. This operation does not change the model. So we could
divide φB by 4 which would give a value of 1, so that the factor can indeed be ignored.

(c) Compute argmaxx1,...,x5
p(x1, . . . , x5) via max-sum message passing with x1 as root.

Solution. As discussed in the solution to the answer above, we can drop factor φB(x2)
since it takes the same value for all x2. Moreover, we can rescale the individual factors by
a constant so they are more amenable to calculations by hand. We normalise them such
that the largest value is one, which gives the following factors. Note that this is entirely
optional.

x1 φA

0 1
1 2

x1 x2 x3 φC

0 0 0 2
1 0 0 1
0 1 0 1
1 1 0 3
0 0 1 1
1 0 1 3
0 1 1 3
1 1 1 2

x3 x4 φD

0 0 4
1 0 1
0 1 1
1 1 3

x3 x5 φE

0 0 1
1 0 2
0 1 2
1 1 1

x5 φF

0 1
1 8

The factor graph without φB together with the messages that we need to compute is:

φA
x1

φC

x2

x3

φD
x4

φE
x5

φF

→ ←↓ ←
←

←

←

← ←

The leaf (log) messages are (using vector notation where the top element corresponds to
xi = 0 and the bottom one to xi = 1):

λφA→x1 =

(
0

log 2

)
λx2→φC =

(
0
0

)
λx4→φD =

(
0
0

)
λφF→x5 =

(
0

log 8

)
(S.97)

The variable node x5 only has one incoming edge so that λx5→φE = λφF→x5 . The message
λφE→x3(x3) equals

λφE→x3(x3) = max
x5

log φE(x3, x5) + λx5→φE (x5) (S.98)

Writing out log φE(x3, x5) + λx5→φE (x5) for all x5 as a function of x3 we have

13 ©Michael U. Gutmann, UoE, 2018-23 CC BY 4.0 cb

https://creativecommons.org/licenses/by/4.0/


x5 log φE(x3 = 0, x5) + λx5→φE (x5)

0 log 1 + 0 = 0
1 log 2 + log 8 = log 16

x5 log φE(x3 = 1, x5) + λx5→φE (x5)

0 log 2 + 0 = log 2
1 log 1 + log 8 = log 8

Taking the maximum over x5 as a function of x3, we obtain

λφE→x3 =

(
log 16
log 8

)
(S.99)

and the backtracking function that indicates the maximiser x̂5 = argmaxx5 log φE(x3, x5)+
λx5→φE (x5) as a function of x3 equals

λ∗φE→x3(x3) =

{
x̂5 = 1 if x3 = 0

x̂5 = 1 if x3 = 1
(S.100)

We perform the same kind of operation for λφD→x3(x3)

λφD→x3(x3) = max
x4

log φD(x3, x4) + λx4→φD(x4) (S.101)

Since λx4→φD(x4) = 0 for all x4, the table with all values of log φD(x3, x4) +λx4→φD(x4) is

x3 x4 log φD(x3, x4) + λx4→φD(x4)

0 0 log 4 + 0 = log 4
1 0 log 1 + 0 = 0
0 1 log 1 + 0 = 0
1 1 log 3 + 0 = log 3

Taking the maximum over x4 as a function of x3 we thus obtain

λφD→x3 =

(
log 4
log 3

)
(S.102)

and the backtracking function that indicates the maximiser x̂4 = argmaxx4 log φD(x3, x4)+
λx4→φD(x4) as a function of x3 equals

λ∗φD→x3(x3) =

{
x̂4 = 0 if x3 = 0

x̂4 = 1 if x3 = 1
(S.103)

For the message λx3→φC (x3) we add together the messages λφE→x3(x3) and λφD→x3(x3)
which gives

λx3→φC =

(
log 16 + log 4
log 8 + log 3

)
=

(
log 64
log 24

)
(S.104)

Next we compute the message λφC→x1(x1) by maximising over x2 and x3,

λφC→x1(x1) = max
x2,x3

log φC(x1, x2, x3) + λx2→φC (x2) + λx3→φC (x3) (S.105)

Since λx2→φC (x2) = 0, the problem becomes

λφC→x1(x1) = max
x2,x3

log φC(x1, x2, x3) + λx3→φC (x3) (S.106)

Building on the table for φC , we form a table with all values of log φC(x1, x2, x3) +
λx3→φC (x3)

14 ©Michael U. Gutmann, UoE, 2018-23 CC BY 4.0 cb

https://creativecommons.org/licenses/by/4.0/


x1 x2 x3 log φC(x1, x2, x3) + λx3→φC (x3)

0 0 0 log 2 + log 64 = log 128
1 0 0 0 + log 64 = log 64
0 1 0 0 + log 64 = log 64
1 1 0 log 3 + log 64 = log 192
0 0 1 log 24
1 0 1 log 3 + log 24 = log 72
0 1 1 log 3 + log 24 = log 72
1 1 1 log 2 + log 24 = log 48

The maximal value as a function of x1 are highlighted in the table, which gives the message

λφC→x1 =

(
log 128
log 192

)
(S.107)

and the backtracking function

λ∗φC→x1(x1) =

{
(x̂2 = 0, x̂3 = 0) if x1 = 0

(x̂2 = 1, x̂3 = 0) if x1 = 1
(S.108)

We now have all incoming messages to the assigned root node x1. Ignoring the normalising
constant, we obtain

γ =

(
γ∗(x1 = 0)
γ∗(x1 = 1)

)
=

(
0 + log 128

log 2 + log 192

)
(S.109)

We can now start the backtracking to compute the desired argmaxx1,...,x5 p(x1, . . . , x5).
Starting at the root we have x̂1 = argmaxx1 γ

∗(x1) = 1. Plugging this value into the
look-up table λ∗φC→x1(x1), we obtain (x̂2 = 1, x̂3 = 0). With the look-up table λ∗φE→x3(x3)
we find x̂5 = 1 and λ∗φD→x3(x3) gives x̂4 = 0 so that overall

argmax
x1,...,x5

p(x1, . . . , x5) = (1, 1, 0, 0, 1). (S.110)

(d) Compute argmaxx1,...,x5
p(x1, . . . , x5) via max-sum message passing with x3 as root.

Solution. With x3 as root, we need the following messages:

φA
x1

φC

x2

x3

φD
x4

φE
x5

φF

→ →↓ →
←

←

←

← ←

The following messages are the same as when x1 was the root:

λφD→x3 =

(
log 4
log 3

)
λφE→x3 =

(
log 16
log 8

)
λφA→x1 =

(
0

log 2

)
λx2→φC =

(
0
0

)
(S.111)

15 ©Michael U. Gutmann, UoE, 2018-23 CC BY 4.0 cb

https://creativecommons.org/licenses/by/4.0/


Since x1 has only one incoming message, we further have

λx1→φC = λφA→x1 =

(
0

log 2

)
. (S.112)

We next compute λφC→x3(x3),

λφC→x3(x3) = max
x1,x2

log φC(x1, x2, x3) + λx1→φC (x1) + λx2→φC (x2). (S.113)

We first form a table for log φC(x1, x2, x3)+λx1→φC (x1)+λx2→φC (x2) noting that λx2→φC (x2) =
0

x1 x2 x3 log φC(x1, x2, x3) + λx1→φC (x1) + λx2→φC (x2)

0 0 0 log 2 + 0 = log 2
1 0 0 0 + log 2 = log 2
0 1 0 0 + 0 = 0
1 1 0 log 3 + log 2 = log 6
0 0 1 0 + 0 = 0
1 0 1 log 3 + log 2 = log 6
0 1 1 log 3 + 0 = log 3
1 1 1 log 2 + log 2 = log 4

The maximal value as a function of x3 are highlighted in the table, which gives the message

λφC→x3 =

(
log 6
log 6

)
(S.114)

and the backtracking function

λ∗φC→x3(x3) =

{
(x̂1 = 1, x̂2 = 1) if x3 = 0

(x̂1 = 1, x̂2 = 0) if x3 = 1
(S.115)

We have now all incoming messages for x3 and can compute γ∗(x3) up the normalising
constant − logZ (which is not needed if we are interested in the argmax only:

γ =

(
γ∗(x3 = 0)
γ∗(x3 = 1)

)
= λφC→x3 + λφD→x3 + λφE→x3 (S.116)

=

(
log 6 + log 4 + log 16 = log 384
log 6 + log 3 + log 8 = log 144

)
(S.117)

We can now start the backtracking which gives: x̂3 = 0, so that λ∗φC→x3(0) = (x̂1 = 1, x̂2 =
1). The backtracking functions λ∗φE→x3(x3) and λ∗φD→x3(x3) are the same for question (c),
which gives λ∗φE→x3(0) = x̂5 = 1 and λ∗φD→x3(0) = x̂4 = 0. Hence, overall, we find

argmax
x1,...,x5

p(x1, . . . , x5) = (1, 1, 0, 0, 1). (S.118)

Note that this matches the result from question (c) where x1 was the root. This is because
the output of the max-sum algorithm is invariant to the choice of the root.

16 ©Michael U. Gutmann, UoE, 2018-23 CC BY 4.0 cb

https://creativecommons.org/licenses/by/4.0/


Exercise 4. Choice of elimination order in factor graphs

Consider the following factor graph, which contains a loop:

x1

φA

x2

x3

φB
x4

φC
x5

x6

φD

Let all variables be binary, xi ∈ {0, 1}, and the factors be defined as follows:

x1 x2 x3 φA

0 0 0 4
1 0 0 2
0 1 0 2
1 1 0 6
0 0 1 2
1 0 1 6
0 1 1 6
1 1 1 4

x2 x3 x4 φB

0 0 0 2
1 0 0 2
0 1 0 4
1 1 0 2
0 0 1 6
1 0 1 8
0 1 1 4
1 1 1 2

x4 x5 φC

0 0 8
1 0 2
0 1 2
1 1 6

x4 x6 φD

0 0 3
1 0 6
0 1 6
1 1 3

(a) Draw the factor graph corresponding to p(x2, x3, x4, x5 | x1 = 0, x6 = 1) and give the tables defining
the new factors φx1=0

A (x2, x3) and φx6=1
D (x4) that you obtain.

Solution. First condition on x1 = 0:

Factor node φA(x1, x2, x3) depends on x1, thus we create a new factor φx1=0
A (x2, x3) from

the table for φA using the rows where x1 = 0.

φx1=0
A

x2

x3

φB
x4

φC
x5

x6

φD

x1 x2 x3 φA

→ 0 0 0 4
1 0 0 2

→ 0 1 0 2
1 1 0 6

→ 0 0 1 2
1 0 1 6

→ 0 1 1 6
1 1 1 4

so that

x2 x3 φx1=0
A

0 0 4
1 0 2
0 1 2
1 1 6

17 ©Michael U. Gutmann, UoE, 2018-23 CC BY 4.0 cb

https://creativecommons.org/licenses/by/4.0/


Next condition on x6 = 1:

Factor node φD(x4, x6) depends on x6, thus we create a new factor φx6=1
D (x4) from the

table for φD using the rows where x6 = 1.

φx1=0
A

x2

x3

φB
x4

φC
x5

φx6=1
D

x4 x6 φD

0 0 3
1 0 6

→ 0 1 6
→ 1 1 3

so that

x4 φx6=1
D

0 6
1 3

(b) Find p(x2 | x1 = 0, x6 = 1) using the elimination ordering (x4, x5, x3):

(i) Draw the graph for p(x2, x3, x5 | x1 = 0, x6 = 1) by marginalising x4
Compute the table for the new factor φ̃4(x2, x3, x5)

(ii) Draw the graph for p(x2, x3 | x1 = 0, x6 = 1) by marginalising x5
Compute the table for the new factor φ̃45(x2, x3)

(iii) Draw the graph for p(x2 | x1 = 0, x6 = 1) by marginalising x3
Compute the table for the new factor φ̃453(x2)

Solution. Starting with the factor graph for p(x2, x3, x4, x5 | x1 = 0, x6 = 1)

φx1=0
A

x2

x3

φB
x4

φC
x5

φx6=1
D

Marginalising x4 combines the three factors φB, φC and φx6=1
D

φx1=0
A

x2

x3

φ̃4
x5

Marginalising x5 modifies the factor φ̃4

18 ©Michael U. Gutmann, UoE, 2018-23 CC BY 4.0 cb

https://creativecommons.org/licenses/by/4.0/


φx1=0
A

x2

x3

φ̃45

Marginalising x3 combines the factors φx1=0
A and φ̃45

x2 φ̃453

We now compute the tables for the new factors φ̃4, φ̃45, φ̃453.

First find φ̃4(x2, x3, x5)

x2 x3 x4 φB

0 0 0 2
1 0 0 2
0 1 0 4
1 1 0 2
0 0 1 6
1 0 1 8
0 1 1 4
1 1 1 2

x4 x5 φC

0 0 8
1 0 2
0 1 2
1 1 6

x4 φx6=1
D

0 6
1 3

so that φ∗(x2, x3, x4, x5) = φB(x2, x3, x4)φC(x4, x5)φ
x6=1
D (x4) equals

x2 x3 x4 x5 φ∗(x2, x3, x4, x5)

0 0 0 0 2 * 8 * 6
1 0 0 0 2 * 8 * 6
0 1 0 0 4 * 8 * 6
1 1 0 0 2 * 8 * 6
0 0 1 0 6 * 2 * 3
1 0 1 0 8 * 2 * 3
0 1 1 0 4 * 2 * 3
1 1 1 0 2 * 2 * 3
0 0 0 1 2 * 2 * 6
1 0 0 1 2 * 2 * 6
0 1 0 1 4 * 2 * 6
1 1 0 1 2 * 2 * 6
0 0 1 1 6 * 6 * 3
1 0 1 1 8 * 6 * 3
0 1 1 1 4 * 6 * 3
1 1 1 1 2 * 6 * 3

and

19 ©Michael U. Gutmann, UoE, 2018-23 CC BY 4.0 cb

https://creativecommons.org/licenses/by/4.0/


x2 x3 x5
∑

x4
φB(x2, x3, x4)φC(x4, x5)φ

x6=1
D (x4) φ̃4

0 0 0 (2 * 8 * 6) + (6 * 2 * 3) = 132
1 0 0 (2 * 8 * 6) + (8 * 2 * 3) = 144
0 1 0 (4 * 8 * 6) + (4 * 2 * 3) = 216
1 1 0 (2 * 8 * 6) + (2 * 2 * 3) = 108
0 0 1 (2 * 2 * 6) + (6 * 6 * 3) = 132
1 0 1 (2 * 2 * 6) + (8 * 6 * 3) = 168
0 1 1 (4 * 2 * 6) + (4 * 6 * 3) = 120
1 1 1 (2 * 2 * 6) + (2 * 6 * 3) = 60

Next find φ̃45(x2, x3)

x2 x3 x5 φ̃4

0 0 0 132
1 0 0 144
0 1 0 216
1 1 0 108
0 0 1 132
1 0 1 168
0 1 1 120
1 1 1 60

so that

x2 x3
∑

x5
φ̃4(x2, x3, x5) φ̃45

0 0 132 + 132 = 264
1 0 144 + 168 = 312
0 1 216 + 120 = 336
1 1 108 + 60 = 168

Finally find φ̃453(x2)

x2 x3 φx1=0
A

0 0 4
1 0 2
0 1 2
1 1 6

x2 x3 φ̃45

0 0 264
1 0 312
0 1 336
1 1 168

so that

x2
∑

x3
φ̃45(x2, x3)φ

x1=0
A (x2, x3) φ̃453

0 (4 * 264) + (2 * 336) = 1728
1 (2 * 312) + (6 * 168) = 1632

The normalising constant is Z = 1728 + 1632. Our conditional marginal is thus:

p(x2 | x1 = 0, x6 = 1) =

(
1728/Z
1632/Z

)
=

(
0.514
0.486

)
(S.119)

(c) Now determine p(x2 | x1 = 0, x6 = 1) with the elimination ordering (x5, x4, x3):

(i) Draw the graph for p(x2, x3, x4, | x1 = 0, x6 = 1) by marginalising x5
Compute the table for the new factor φ̃5(x4)

(ii) Draw the graph for p(x2, x3 | x1 = 0, x6 = 1) by marginalising x4
Compute the table for the new factor φ̃54(x2, x3)

(iii) Draw the graph for p(x2 | x1 = 0, x6 = 1) by marginalising x3
Compute the table for the new factor φ̃543(x2)

20 ©Michael U. Gutmann, UoE, 2018-23 CC BY 4.0 cb

https://creativecommons.org/licenses/by/4.0/


Solution. Starting with the factor graph for p(x2, x3, x4, x5 | x1 = 0, x6 = 1)

φx1=0
A

x2

x3

φB
x4

φC
x5

φx6=1
D

Marginalising x5 modifies the factor φC

φx1=0
A

x2

x3

φB
x4

φ̃5

φx6=1
D

Marginalising x4 combines the three factors φB, φ̃5 and φx6=1
D

φx1=0
A

x2

x3

φ̃54

Marginalising x3 combines the factors φx1=0
A and φ̃54

x2 φ̃543

We now compute the tables for the new factors φ̃5, φ̃54, and φ̃543.

First find φ̃5(x4)

x4 x5 φC

0 0 8
1 0 2
0 1 2
1 1 6

so that

x4
∑

x5
φC(x4, x5) φ̃5

0 8 + 2 = 10
1 2 + 6 = 8

Next find φ̃54(x2, x3)

21 ©Michael U. Gutmann, UoE, 2018-23 CC BY 4.0 cb

https://creativecommons.org/licenses/by/4.0/


x2 x3 x4 φB

0 0 0 2
1 0 0 2
0 1 0 4
1 1 0 2
0 0 1 6
1 0 1 8
0 1 1 4
1 1 1 2

x4 φ̃5

0 10
1 8

x4 φx6=1
D

0 6
1 3

so that φ∗(x2, x3, x4) = φB(x2, x3, x4)φ̃5(x4)φ
x6=1
D (x4) equals

x2 x3 x4 φ∗(x2, x3, x4)

0 0 0 2 * 10 * 6
1 0 0 2 * 10 * 6
0 1 0 4 * 10 * 6
1 1 0 2 * 10 * 6
0 0 1 6 * 8 * 3
1 0 1 8 * 8 * 3
0 1 1 4 * 8 * 3
1 1 1 2 * 8 * 3

and

x2 x3
∑

x4
φB(x2, x3, x4)φ̃5(x4)φ

x6=1
D (x4) φ̃54

0 0 (2 * 10 * 6) + (6 * 8 * 3) = 264
1 0 (2 * 10 * 6) + (8 * 8 * 3) = 312
0 1 (4 * 10 * 6) + (4 * 8 * 3) = 336
1 1 (2 * 10 * 6) + (2 * 8 * 3) = 168

Finally find φ̃543(x2)

x2 x3 φx1=0
A

0 0 4
1 0 2
0 1 2
1 1 6

x2 x3 φ̃54

0 0 264
1 0 312
0 1 336
1 1 168

so that

x2
∑

x3
φ̃54(x2, x3)φ

x1=0
A (x2, x3) φ̃543

0 (4 * 264) + (2 * 336) = 1728
1 (2 * 312) + (6 * 168) = 1632

As with the ordering in the previous part, we should come to the same result for our
conditional marginal distribution.The normalising constant is Z = 1728 + 1632, so that
the conditional marginal is

p(x2 | x1 = 0, x6 = 1) =

(
1728/Z
1632/Z

)
=

(
0.514
0.486

)
(S.120)

22 ©Michael U. Gutmann, UoE, 2018-23 CC BY 4.0 cb

https://creativecommons.org/licenses/by/4.0/


(d) Which variable ordering, (x4, x5, x3) or (x5, x4, x3) do you prefer?

Solution. The ordering (x5, x4, x3) is cheaper and should be preferred over the ordering
(x4, x5, x3) .

The reason for the difference in the cost is that x4 has three neighbours in the factor graph
for p(x2, x3, x4, x5 | x1 = 0, x6 = 1). However, after elimination of x5, which has only one
neighbour, x4 has only two neighbours left. Eliminating variables with more neighbours
leads to larger (temporary) factors and hence a larger cost. We can see this from the tables
that were generated during the computation (or numbers that we needed to add together):
for the ordering (x4, x5, x3), the largest table had 24 entries while for (x5, x4, x3), it had
23 entries.

Choosing a reasonable variable ordering has a direct effect on the computational complexity
of variable elimination. This effect becomes even more pronounced when the domain of
our discrete variables has a size greater than 2 (binary variables), or if the variables are
continuous.

φx1=0
A

x2

x3

φB
x4

φC
x5

φx6=1
D

Exercise 5. Choice of elimination order in factor graphs

We would like to compute the marginal p(x1) by variable elimination for a joint pmf represented by the
following factor graph. All variables xi can take K different values.

x1

φa

x2

φb

x3

φc

x4

x5

φd

x6

φe

x7

φf

(a) A friend proposes the elimination order x4, x5, x6, x7, x3, x2, i.e. to do x4 first and x2 last. Explain
why this is computationally inefficient.

Solution. According to the factor graph, p(x1, . . . , x7) factorises as

p(x1, . . . , x7) ∝ φa(x1, x4)φb(x2, x4)φc(x3, x4)φd(x5, x4)φe(x6, x4)φf (x7, x4) (S.121)

23 ©Michael U. Gutmann, UoE, 2018-23 CC BY 4.0 cb

https://creativecommons.org/licenses/by/4.0/


If we choose to eliminate x4 first, i.e. compute

p(x1, x2, x3, x5, x6, x7) =
∑
x4

p(x1, . . . , x7) (S.122)

∝
∑
x4

φa(x1, x4)φb(x2, x4)φc(x3, x4)φd(x5, x4)φe(x6, x4)φf (x7, x4)

(S.123)

we cannot pull any of the factors out of the sum since each of them depends on x4. This
means the cost to sum out x4 for all combinations of the six variables (x1, x2, x3, x5, x6, x7)
is K7. Moreover, the new factor

φ̃(x1, x2, x3, x5, x6, x7) =
∑
x4

φa(x1, x4)φb(x2, x4)φc(x3, x4)φd(x5, x4)φe(x6, x4)φf (x7, x4)

(S.124)
does not factorise anymore so that subsequent variable eliminations will be expensive too.

(b) Propose an elimination ordering that achieves O(K2) computational cost per variable elimination
and explain why it does so.

Solution. Any ordering where x4 is eliminated last will do. At any stage, elimination of
one of the variables x2, x3, x5, x6, x7 is then a O(K2) operation. This is because e.g.

p(x1, . . . , x6) =
∑
x7

p(x1, . . . , x7) (S.125)

∝ φa(x1, x4)φb(x2, x4)φc(x3, x4)φd(x5, x4)φe(x6, x4)
∑
x7

φf (x7, x4)︸ ︷︷ ︸
φ̃7(x4)

(S.126)

∝ φa(x1, x4)φb(x2, x4)φc(x3, x4)φd(x5, x4)φe(x6, x4)φ̃7(x4) (S.127)

where computing φ̃7(x4) for all values of x4 is O(K2). Further,

p(x1, . . . , x5) =
∑
x6

p(x1, . . . , x6) (S.128)

∝ φa(x1, x4)φb(x2, x4)φc(x3, x4)φd(x5, x4)φ̃7(x4)
∑
x6

φe(x6, x4) (S.129)

∝ φa(x1, x4)φb(x2, x4)φc(x3, x4)φd(x5, x4)φ̃7(x4)φ̃6(x4), (S.130)

where computation of φ̃6(x4) for all values of x4 is again O(K2). Continuing in this
manner, one obtains

p(x1, x4) ∝ φa(x1, x4)φ̃2(x4)φ̃3(x4)φ̃5(x4)φ̃6(x4)φ̃7(x4). (S.131)

where each derived factor φ̃ has O(K2) cost. Summing out x4 and normalising the pmf is
again a O(K2) operation.

24 ©Michael U. Gutmann, UoE, 2018-23 CC BY 4.0 cb

https://creativecommons.org/licenses/by/4.0/

