@ R — Probabilistic Modelling and Reasoning Spring 2023
‘& informatics Exercises 4 — Notes Hodari & Gutmann

These notes are intended to give a summary of relevant concepts from the lectures which are
helpful to complete the exercises. It is not intended to cover the lectures thoroughly. Learning
this content is not a replacement for working through the lecture material and the exercises.

Sum-product algorithm — Variable elimination for factor trees reformulated with “mes-
sages” which allows for re-use of computations already done. See table on following page.

Max-product algorithm — Same as the sum-product algorithm, but max replaces > .
Max-sum algorithm — Max-product algorithm in the log-domain. See table on following
page.
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Max-sum algorithm
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