@ R — Probabilistic Modelling and Reasoning Spring 2023
‘& informatics Exercises 4 — Notes Hodari & Gutmann

These notes are intended to give a summary of relevant concepts from the lectures which are
helpful to complete the exercises. It is not intended to cover the lectures thoroughly. Learning
this content is not a replacement for working through the lecture material and the exercises.

Sum-product algorithm — Variable elimination for factor trees reformulated with “mes-
sages” which allows for re-use of computations already done. See table on following page.

Max-product algorithm — Same as the sum-product algorithm, but max replaces > .
Max-sum algorithm — Max-product algorithm in the log-domain. See table on following
page.



Sum-product algorithm

Moz () Factor to variable ' NG ﬁ .
Hp—a() = D0, 0y Q@1 25, 2) [Tioy Haymo(i)
where {z1,...,2;} =ne(¢) \ {z} ~
o | ~
Ho—se(T) Variable to factor _, ¢
j L
N:E—)(b(m) = ngl Md)l—m(x)
where {¢1,...,¢;} =ne(z) \ {¢} o
1 | ~
() Univariate marginals — unnormalised - Q:s
p(x) o< [Tioy Ho,—a(2)
where {¢1,...,¢;} = ne(z) 6 ~
p(x1,...,z;) Joint marginals of variables sharing a factor— unnormalised

o x5) < @@, x5) [Ty a—e(20)
., 2} =ne(p)

p(x1,..
where {x1, .

Max-sum algorithm

Yoz () Factor to variable ' N N
7(1)—)90(1') = MaXg,,...z; log Qb(-fUl, sy g,y .Z‘) + Zgzl 'Yxl—mb(xl) "
* — 1 4 J . -
Ve (¥) = argmax,, . 10gd(z1,. .., 25, %) + 325 Vume (i)
where {z1,...,2;} =ne(¢) \ {z}
o | ~
Yoo (T) Variable to factor _, ¢
j |
f)/x%qﬁ(x) - Zg:l 7@%1(37)
where {¢1,...,¢;} = ne(z) \ {¢} ow
¢ | ~
log Pmax Maximum probability . %
logpmax = maXxg 7y (33)7 v (x) = - logZ =+ 22:1 ’7¢i—>x(x)
where {¢1,...,¢;} = ne(x) ¢ W —
argmax, p(x) Maximum probability states — no need for normalisation

Init: & = argmax, v*(z) = argmax, S>7_, 74,52 (z)
Backtrack to leaves via v} , ()




