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Exercises for the tutorials: 1 and 2.

The other exercises are for self-study and exam preparation. All material is examinable unless
otherwise mentioned.

Exercise 1. Conversion to factor graphs

(a) Draw an undirected factor graph for the directed graphical model defined by the graph
below.

y1 y2 y3 y4

x1 x2 x3 x4

(b) Draw an undirected factor graph for directed graphical models defined by the graph below
(this kind of graph is called a polytree: there are no loops but a node may have more than
one parent).

x1 x2

x3 x4
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Exercise 2. Variable elimination for the “car start” network

Consider the belief network given in Figure 1, which gives the probability of a car starting (or
not) (s), depending on the state of the battery (b), if it has fuel (f), the state of the fuel gauge
(g), and if the car “turns over” (t).

Below we code the variables as 0/1, with:
b = 0 ≡ b = bad, and b = 1 ≡ b = good,
f = 0 ≡ f = empty, and f = 1 ≡ f = not empty,
g = 0 ≡ g = empty, and g = 1 ≡ g = not empty,
t = 0 ≡ t = no, and t = 1 ≡ t = yes,
s = 0 ≡ s = no, and s = 1 ≡ s = yes.

We have that p(b = 0) = 0.02, and p(f = 0) = 0.05. The other CPTs are given by
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Heckerman (1995)

P(f=empty) = 0.05P(b=bad) = 0.02

P(t=no|b=bad) = 0.98
P(t=no|b=good) = 0.03

P(g=empty|b=good, f=not empty) = 0.04
P(g=empty| b=good, f=empty) = 0.97
P(g=empty| b=bad, f=not empty) = 0.10
P(g=empty|b=bad, f=empty) = 0.99

P(s=no|t=yes, f=not empty) = 0.01
P(s=no|t=yes, f=empty) = 0.92
P(s=no| t = no, f=not empty) = 1.0
P(s=no| t = no, f = empty) = 1.0

Figure 1: Simple network describing if a car’s engine starts, due to Heckerman (1995).

b f p(g = 0|b, f)

0 0 0.99
0 1 0.10
1 0 0.97
1 1 0.04

b p(t = 0|b)

0 0.98
1 0.03

t f p(s = 0|t, f)

0 0 1.0
0 1 1.0
1 0 0.92
1 1 0.01

(a) From the graphical model we can read off

p(b, f, g, t, s) = p(b)p(f)p(g|b, f)p(t|b)p(s|t, f). (1)

Now consider the potential representation

p(b, f, g, t, s)
def
= φbt(b, t)φstf (s, t, f)φgbf (g, b, f).

Assign the factors in eq. 1 to the potentials in a valid way.

(b) We wish to compute p(b, f |s = 0) (i.e., the car does not start). This conditioning has the
effect of turning

p(b, f, g, t, s) = φbt(b, t)φstf (s, t, f)φgbf (g, b, f)

into
p(b, f, g, t|s = 0) ∝ φbt(b, t)φs=0

tf (t, f)φgbf (g, b, f).

Identify the modification needed to the factor(s) in the potential φstf to turn it into φs=0
tf .

(c) First eliminate g to obtain a potential representation for p(b, f, t|s = 0).

(d) Now eliminate t to obtain a potential representation for p(b, f |s = 0). Evaluate this for all
four possible combinations of b and f . Normalize this to obtain the posterior probability
of all four configurations of b and f .

(e) Wellman and Henrion (1993)1 state:

1IEEE Transactions on Pattern Analysis and Machine Intelligence, 15(3) pp 287–292 (1993).
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“Explaining away” is a common pattern of reasoning in which the confirmation of
one cause of an observed or believed event reduces the need to invoke alternative
causes.

Think about the four posterior probabilites obtained above. Given that the car does not
start, do these broadly meet with your expectations? Do you observe “explaining away”?

(f) In general we write computer programs to do inference in such models. See https:

//github.com/vsimkus/pmr2023-pgm-demo for a demo for this question prepared by the
PMR TA Vaidotas Simkus using the pgmpy Python package. You can run the notebook
on Google Colab directly via the link http://colab.research.google.com/github/

vsimkus/pmr2023-pgm-demo.

Exercise 3. Limits of directed and undirected graphical models

We here consider the probabilistic model p(y1, y2, x1, x2) = p(y1, y2|x1, x2)p(x1)p(x2) where
p(y1, y2|x1, x2) factorises as

p(y1, y2|x1, x2) = p(y1|x1)p(y2|x2)φ(y1, y2)n(x1, x2) (2)

with n(x1, x2) equal to

n(x1, x2) =

(∫
p(y1|x1)p(y2|x2)φ(y1, y2)dy1dy2

)−1

. (3)

In the lecture “Factor Graphs”, we used the model to illustrate the setup where x1 and x2 are
two independent inputs that each control the interacting variables y1 and y2 (see graph below).

some interaction

x1 x2

y1 y2

(a) Use the basic characterisations of statistical independence

u ⊥⊥ v|z ⇐⇒ p(u, v|z) = p(u|z)p(v|z) (4)

u ⊥⊥ v|z ⇐⇒ p(u, v|z) = a(u, z)b(v, z) (a(u, z) ≥ 0, b(v, z) ≥ 0) (5)

to show that p(y1, y2, x1, x2) satisfies the following independencies

x1 ⊥⊥ x2 x1 ⊥⊥ y2 | y1, x2 x2 ⊥⊥ y1 | y2, x1

(b) (optional, not examinable) The following factor graph represents p(y1, y2, x1, x2):

p(x1)

x1

p(x2)

x2

p(y1|x1) p(y2|x2)

y1 y2

n(x1 x2)

φ(y1 y2)
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Use the separation rules for factor graphs to verify that we can find all independence
relations. The separation rules are (see Barber, section 4.4.1, or the original paper by
Brendan Frey: https://arxiv.org/abs/1212.2486):

“If all paths are blocked, the variables are conditionally independent. A path is blocked if
one or more of the following conditions is satisfied:

1. One of the variables in the path is in the conditioning set.

2. One of the variables or factors in the path has two incoming edges that are part of
the path (variable or factor collider), and neither the variable or factor nor any of its
descendants are in the conditioning set.”

Remarks:

• “one or more of the following” should best be read as “one of the following”.

• “incoming edges” means directed incoming edges

• the descendants of a variable or factor node are all the variables that you can reach
by following a path (containing directed or directed edges, but for directed edges, all
directions have to be consistent)

• In the graph we have dashed directed edges: they do count when you determine the
descendants but they do not contribute to paths. For example, y1 is a descendant of
the n(x1, x2) factor node but x1 − n− y2 is not a path.
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