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Exercises for the tutorials: 1 and 2.

The other exercises are for self-study and exam preparation. All material is examinable unless otherwise
mentioned.

Exercise 1. Conversion to factor graphs

(a) Draw an undirected factor graph for the directed graphical model defined by the graph below.

y1 y2 y3 y4

x1 x2 x3 x4

Solution. The graph specifies probabilistic models that factorise as

p(x1, . . . , x4, y1, . . . , y4) = p(x1)p(y1|x1)
4∏

i=2

p(yi|xi)p(xi|xi−1)

It is the graph for a hidden Markov model. The corresponding factor graph is shown
below.
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(b) Draw an undirected factor graph for directed graphical models defined by the graph below (this kind
of graph is called a polytree: there are no loops but a node may have more than one parent).

x1 x2

x3 x4

x5 x6

Solution. For the factor graph, we note that the directed graph defines the following
class of probabilistic models

p(x1, . . . x6) = p(x1)p(x2)p(x3|x1)p(x4|x1, x2)p(x5|x4)p(x6|x4)

This gives the factor graph on right in the figure below.

1©Michael U. Gutmann and Chris Williams, UoE, 2018-23 CC BY 4.0 cb

https://creativecommons.org/licenses/by/4.0/


p(x1) x1 p(x2)x2

p(x3|x1)

x3

p(x4|x1 x2)

x4

p(x5|x4)

x5

p(x6|x4)

x6

Note:

• One may choose to group some factors together in order to obtain a factor graph with
a particular structure (see factor graph below)

x1 x2

p(x3|x1)

x3

p(x4|x1 x2)p(x1)p(x2)

x4

p(x5|x4)p(x6|x4)

x5 x6

Exercise 2. Variable elimination for the “car start” network

Gauge

Fuel

Turn Over

Battery

Start

Heckerman (1995)

P(f=empty) = 0.05P(b=bad) = 0.02

P(t=no|b=bad) = 0.98
P(t=no|b=good) = 0.03

P(g=empty|b=good, f=not empty) = 0.04
P(g=empty| b=good, f=empty) = 0.97
P(g=empty| b=bad, f=not empty) = 0.10
P(g=empty|b=bad, f=empty) = 0.99

P(s=no|t=yes, f=not empty) = 0.01
P(s=no|t=yes, f=empty) = 0.92
P(s=no| t = no, f=not empty) = 1.0
P(s=no| t = no, f = empty) = 1.0

Figure 1: Simple network describing if a car’s engine starts, due to Heckerman (1995).

Consider the belief network given in Figure 1, which gives the probability of a car starting (or not) (s),
depending on the state of the battery (b), if it has fuel (f), the state of the fuel gauge (g), and if the car
“turns over” (t).
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Below we code the variables as 0/1, with:
b = 0 ≡ b = bad, and b = 1 ≡ b = good,
f = 0 ≡ f = empty, and f = 1 ≡ f = not empty,
g = 0 ≡ g = empty, and g = 1 ≡ g = not empty,
t = 0 ≡ t = no, and t = 1 ≡ t = yes,
s = 0 ≡ s = no, and s = 1 ≡ s = yes.

We have that p(b = 0) = 0.02, and p(f = 0) = 0.05. The other CPTs are given by

b f p(g = 0|b, f)

0 0 0.99
0 1 0.10
1 0 0.97
1 1 0.04

b p(t = 0|b)

0 0.98
1 0.03

t f p(s = 0|t, f)

0 0 1.0
0 1 1.0
1 0 0.92
1 1 0.01

(a) From the graphical model we can read off

p(b, f, g, t, s) = p(b)p(f)p(g|b, f)p(t|b)p(s|t, f). (1)

Now consider the potential representation

p(b, f, g, t, s)
def
= φbt(b, t)φstf (s, t, f)φgbf (g, b, f).

Assign the factors in eq. 1 to the potentials in a valid way.

Solution. Here we assume the assignment φbt(b, t) = p(b)p(t|b), φstf (s, t, f) = p(f)p(s|t, f)
and φgbf (g, b, f) = p(g|b, f). (Other valid assigments of the p(b) and p(f) factors to po-
tentials are also possible.)

(b) We wish to compute p(b, f |s = 0) (i.e., the car does not start). This conditioning has the effect of
turning

p(b, f, g, t, s) = φbt(b, t)φstf (s, t, f)φgbf (g, b, f)

into
p(b, f, g, t|s = 0) ∝ φbt(b, t)φs=0

tf (t, f)φgbf (g, b, f).

Identify the modification needed to the factor(s) in the potential φstf to turn it into φs=0
tf .

Solution. To condition on s = 0, we have φs=0
tf = p(f)p(s = 0|t, f)

(c) First eliminate g to obtain a potential representation for p(b, f, t|s = 0).

Solution. We could compute a table with values of φgbf (g = 0, b, f) and φgbf (g = 1, b, f)
for all for combinations of b and f values, but in our assignment of potentials we have
chosen φgbf (g, b, f) = p(g|b, f). Hence summing out g will give the value of 1 for all values
of b and f .

p(b, f, t|s = 0) ∝ φbt(b, t)φs=0
tf (t, f).

(d) Now eliminate t to obtain a potential representation for p(b, f |s = 0). Evaluate this for all four

possible combinations of b and f . Normalize this to obtain the posterior probability of all four

configurations of b and f .
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Solution. We wish to sum out the variable t in the potential representation

p(b, f, t|s = 0) ∝ φbt(b, t)φs=0
tf (t, f).

There is no shortcut for this, we need to compute the potentials φbt(b, t) and φs=0
tf (t, f) as

tables, and sum out t to obtain φ̃s=0
bf . To obtain the posterior probability we normalize by

summing over the 4 configurations to obtain
Z = φ̃s=0

bf (b = 0, f = 0) + φ̃s=0
bf (b = 0, f = 1) + φ̃s=0

bf (b = 1, f = 0) + φ̃s=0
bf (b = 1, f = 1).

b t p(b) p(t|b) φbt

0 0 0.02 0.98 0.0196
0 1 0.02 1-0.98 0.0004
1 0 1-0.02 0.03 0.0294
1 1 1-0.02 1-0.03 0.9506

t f p(f) p(s = 0|t, f)) φs=0
tf

0 0 0.05 1.0 0.05
0 1 1-0.05 1.0 0.95
1 0 0.05 0.92 0.046
1 1 1-0.05 0.01 0.0095

b f φb,t=0 ∗ φs=0
t=0,f φb,t=1 ∗ φs=0

t=1,f φ̃s=0
bf φ̃s=0

bf /Z

0 0 0.0196*0.05 0.0004*0.046 0.0009984 0.0098
0 1 0.0196*0.95 0.0004*0.0095 0.0186 0.1830
1 0 0.0294*0.05 0.9506*0.046 0.0452 0.4441
1 1 0.0294*0.95 0.9506*0.0095 0.0370 0.3631

where Z = 0.0009984 + 0.0186 + 0.0452 + 0.0370 = 0.1018 (working to 4 dec. pl.).

(e) Wellman and Henrion (1993)1 state:

“Explaining away” is a common pattern of reasoning in which the confirmation of one
cause of an observed or believed event reduces the need to invoke alternative causes.

Think about the four posterior probabilites obtained above. Given that the car does not start, do
these broadly meet with your expectations? Do you observe “explaining away”?

Solution. The MAP configuration is for b = 1, f = 0, i.e. the fuel is empty but the
battery is good.

Perhaps surprisingly the second most probable configuration is b = 1, f = 1, i.e. the
battery is good and the fuel is not empty. Although the probability that t = 0 is only 0.03
if b = 1, the fact that p(s = 0|t = 0, f = 1) = 1.0 means that there is signficant mass in
the posterior on b = 1, f = 1.

The configuration b = 0, f = 1 also has high posterior probability, as the bad battery will
give rise to a low probability of the car turning over, and hence starting.

It is notable that the posterior probability of a “double failure” b = 0, f = 0 is less than
1%. Thus we do observe explaining away—setting either b = 0 (with f = 1) or f = 0
(with b = 1) is enough to explain the failure of the car to start, and the very improbable
double failure is not supported.

(f) In general we write computer programs to do inference in such models. See https: // github.

com/ vsimkus/ pmr2023-pgm-demo for a demo for this question prepared by the PMR TA Vaidotas
Simkus using the pgmpy Python package. You can run the notebook on Google Colab directly via
the link http: // colab. research. google. com/ github/ vsimkus/ pmr2023-pgm-demo .

1IEEE Transactions on Pattern Analysis and Machine Intelligence, 15(3) pp 287–292 (1993).
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Exercise 3. Limits of directed and undirected graphical models

We here consider the probabilistic model p(y1, y2, x1, x2) = p(y1, y2|x1, x2)p(x1)p(x2) where p(y1, y2|x1, x2)
factorises as

p(y1, y2|x1, x2) = p(y1|x1)p(y2|x2)φ(y1, y2)n(x1, x2) (2)

with n(x1, x2) equal to

n(x1, x2) =

(∫
p(y1|x1)p(y2|x2)φ(y1, y2)dy1dy2

)−1

. (3)

In the lecture “Factor Graphs”, we used the model to illustrate the setup where x1 and x2 are two inde-
pendent inputs that each control the interacting variables y1 and y2 (see graph below).

some interaction

x1 x2

y1 y2

(a) Use the basic characterisations of statistical independence

u ⊥⊥ v|z ⇐⇒ p(u, v|z) = p(u|z)p(v|z) (4)

u ⊥⊥ v|z ⇐⇒ p(u, v|z) = a(u, z)b(v, z) (a(u, z) ≥ 0, b(v, z) ≥ 0) (5)

to show that p(y1, y2, x1, x2) satisfies the following independencies

x1 ⊥⊥ x2 x1 ⊥⊥ y2 | y1, x2 x2 ⊥⊥ y1 | y2, x1

Solution. The pdf/pmf is

p(y1, y2, x1, x2) = p(y1|x1)p(y2|x2)φ(y1, y2)n(x1, x2)p(x1)p(x2)

For x1 ⊥⊥ x2

We compute p(x1, x2) as

p(x1, x2) =

∫
p(y1, y2, x1, x2)dy1dy2 (S.1)

=

∫
p(y1|x1)p(y2|x2)φ(y1, y2)n(x1, x2)p(x1)p(x2)dy1dy2 (S.2)

= n(x1, x2)p(x1)p(x2)

∫
p(y1|x1)p(y2|x2)φ(y1, y2)dy1dy2 (S.3)

(3)
= n(x1, x2)p(x1)p(x2)

1

n(x1, x2)
(S.4)

= p(x1)p(x2). (S.5)

Since p(x1) and p(x2) are the univariate marginals of x1 and x2, respectively, it follows
from (4) that x1 ⊥⊥ x2.

For x1 ⊥⊥ y2 | y1,x2

We rewrite p(y1, y2, x1, x2) as

p(y1, y2, x1, x2) = p(y1|x1)p(y2|x2)φ(y1, y2)n(x1, x2)p(x1)p(x2) (S.6)

= [p(y1|x1)p(x1)n(x1, x2)] [p(y2|x2)φ(y1, y2)p(x2)] (S.7)

= φA(x1, y1, x2)φB(y2, y1, x2) (S.8)
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With (5), we have that x1 ⊥⊥ y2 | y1, x2. Note that p(x2) can be associated either with φA
or with φB.

For x2 ⊥⊥ y1 | y2,x1

We use here the same approach as for x1 ⊥⊥ y2 | y1, x2. (By symmetry considerations,
we could immediately see that the relation holds but let us write it out for clarity). We
rewrite p(y1, y2, x1, x2) as

p(y1, y2, x1, x2) = p(y1|x1)p(y2|x2)φ(y1, y2)n(x1, x2)p(x1)p(x2) (S.9)

= [p(y2|x2)n(x1, x2)p(x2)p(x1))] [p(y1|x1)φ(y1, y2)]) (S.10)

= φ̃A(x2, x1, y2)φ̃B(y1, y2, x1) (S.11)

With (5), we have that x2 ⊥⊥ y1 | y2, x1.

(b) (optional, not examinable) The following factor graph represents p(y1, y2, x1, x2):

p(x1)

x1

p(x2)

x2

p(y1|x1) p(y2|x2)

y1 y2

n(x1 x2)

φ(y1 y2)

Use the separation rules for factor graphs to verify that we can find all independence relations.
The separation rules are (see Barber, section 4.4.1, or the original paper by Brendan Frey: https:

// arxiv. org/ abs/ 1212. 2486 ):

“If all paths are blocked, the variables are conditionally independent. A path is blocked if one or
more of the following conditions is satisfied:

1. One of the variables in the path is in the conditioning set.

2. One of the variables or factors in the path has two incoming edges that are part of the path
(variable or factor collider), and neither the variable or factor nor any of its descendants are
in the conditioning set.”

Remarks:

• “one or more of the following” should best be read as “one of the following”.

• “incoming edges” means directed incoming edges

• the descendants of a variable or factor node are all the variables that you can reach by following
a path (containing directed or directed edges, but for directed edges, all directions have to be
consistent)

• In the graph we have dashed directed edges: they do count when you determine the descendants
but they do not contribute to paths. For example, y1 is a descendant of the n(x1, x2) factor
node but x1 − n− y2 is not a path.

Solution. x1 ⊥⊥ x2

There are two paths from x1 to x2 marked with red and blue below:
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p(x1)

x1

p(x2)

x2

p(y1|x1) p(y2|x2)

y1 y2

n(x1 x2)

φ(y1 y2)

Both the blue and red path are blocked by condition 2.

x1 ⊥⊥ y2 | y1,x2

There are two paths from x1 to y2 marked with red and blue below:

p(x1)

x1

p(x2)

x2

p(y1|x1) p(y2|x2)

y1 y2

n(x1 x2)

φ(y1 y2)

The observed variables are marked in blue. For the red path, the observed x2 blocks the
path (condition 1). Note that the n(x1, x2) node would be open by condition 2. The blue
path is blocked by condition 1 too. In directed graphical models, the y1 node would be
open, but here while condition 2 does not apply, condition 1 still applies (note the one or
more of ... in the separation rules), so that the path is blocked.

x2 ⊥⊥ y1 | y2,x1

There are two paths from x2 to y1 marked with red and blue below:

p(x1)

x1

p(x2)

x2

p(y1|x1) p(y2|x2)

y1 y2

n(x1 x2)

φ(x1 x2)

The same reasoning as before yields the result.

Finally note that x1 and x2 are not independent given y1 or y2 because the upper path
through n(x1, x2) is not blocked whenever y1 or y2 are observed (condition 2).

Credit: this example is discussed in the original paper by B. Frey (Figure 6).
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