These notes are intended to give a summary of relevant concepts from the lectures which are helpful to complete the exercises. It is not intended to cover the lectures thoroughly. Learning this content is not a replacement for working through the lecture material and the exercises.

Factor graph - A factor graph represents an arbitrary function in terms of factors and their connections with variables. For example, a factor graph can represent a distribution written as a Gibbs distribution $-p(\mathbf{x})=\frac{1}{Z} \prod_{c} \phi_{c}\left(\mathcal{X}_{c}\right)$ - where variables $x_{i} \in \mathbf{x}$ are represented with variable nodes (circles) and potentials ϕ_{c} are represented with factor nodes (squares). Edges connect each factor node ϕ_{c} to all its variable nodes $x_{i} \in \mathcal{X}_{c}$.

$$
p\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=\frac{1}{Z} \phi_{1}\left(x_{1}, x_{2}, x_{3}\right) \phi_{2}\left(x_{3}, x_{4}\right) \phi_{3}\left(x_{4}\right)
$$

Variable elimination - Given $p(\mathcal{X}) \propto \prod_{c} \phi_{c}\left(\mathcal{X}_{c}\right)$, we compute the marginal $p\left(\mathcal{X} \backslash x^{*}\right)$ via the sum rule by exploiting the factorisation by means of the distributive law.

We sum out the variable x^{*} by first finding all factors $\phi_{i}\left(\mathcal{X}_{i}\right)$ such that $x^{*} \in \mathcal{X}_{i}$, and forming the compound factor $\phi^{*}\left(\mathcal{X}^{*}\right)=\prod_{i: x^{*} \in \mathcal{X}_{i}} \phi_{i}\left(\mathcal{X}_{i}\right)$, with $\mathcal{X}^{*}=\bigcup_{i: x^{*} \in \mathcal{X}_{i}} \mathcal{X}_{i}$. Summing out x^{*} then produces a new factor $\tilde{\phi}^{*}\left(\tilde{\mathcal{X}}^{*}\right)=\sum_{x^{*}} \phi^{*}\left(\mathcal{X}^{*}\right)$ that does not depend on x^{*}, i.e. $\tilde{\mathcal{X}}^{*}=\mathcal{X}^{*} \backslash x^{*}$. This is possible as products are commutative, and a sum can be distributed within a product as long as all terms depending on the variable(s) being summed come to the right of the sum.

$$
\begin{align*}
p\left(\mathcal{X} \backslash x^{*}\right) \propto \sum_{x^{*}} \prod_{c} \phi_{c}\left(\mathcal{X}_{c}\right) & \propto\left[\prod_{i: x^{*} \notin \mathcal{X}_{i}} \phi_{i}\left(\mathcal{X}_{i}\right)\right]\left[\sum_{x^{*}} \prod_{i: x^{*} \in \mathcal{X}_{i}} \phi_{i}\left(\mathcal{X}_{i}\right)\right] \tag{1}\\
& \propto\left[\prod_{i: x^{*} \notin \mathcal{X}_{i}} \phi_{i}\left(\mathcal{X}_{i}\right)\right] \tilde{\phi}^{*}\left(\tilde{\mathcal{X}}^{*}\right) \tag{2}
\end{align*}
$$

When eliminating variables, order of elimination matters. However, optimal choice of elimination order is difficult. Picking variables greedily is a common heuristic, where the "best" x^{*} is the one that fewest factors ϕ_{c} depend upon.

