
Probabilistic Modelling and Reasoning

Exercises 3 — Notes
Spring 2023

Hodari & Gutmann

These notes are intended to give a summary of relevant concepts from the lectures which are
helpful to complete the exercises. It is not intended to cover the lectures thoroughly. Learning
this content is not a replacement for working through the lecture material and the exercises.

Factor graph — A factor graph represents an arbitrary function in terms of factors and their
connections with variables. For example, a factor graph can represent a distribution written as a
Gibbs distribution – p(x) = 1

Z

∏
c φc(Xc) – where variables xi ∈ x are represented with variable

nodes (circles) and potentials φc are represented with factor nodes (squares). Edges connect
each factor node φc to all its variable nodes xi ∈ Xc.
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Variable elimination — Given p(X ) ∝
∏

c φc(Xc), we compute the marginal p(X \ x∗) via
the sum rule by exploiting the factorisation by means of the distributive law.

We sum out the variable x∗ by first finding all factors φi(Xi) such that x∗ ∈ Xi, and forming
the compound factor φ∗(X ∗) =

∏
i:x∗∈Xi

φi(Xi), with X ∗ =
⋃

i:x∗∈Xi
Xi. Summing out x∗ then

produces a new factor φ̃∗(X̃ ∗) =
∑

x∗ φ∗(X ∗) that does not depend on x∗, i.e. X̃ ∗ = X ∗ \ x∗.
This is possible as products are commutative, and a sum can be distributed within a product
as long as all terms depending on the variable(s) being summed come to the right of the sum.
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 φ̃∗(X̃ ∗) (2)

When eliminating variables, order of elimination matters. However, optimal choice of elimination
order is difficult. Picking variables greedily is a common heuristic, where the “best” x∗ is the
one that fewest factors φc depend upon.
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