@ R — Probabilistic Modelling and Reasoning Spring 2023
& informatics Series 2 Michael Gutmann

Ezercises for the tutorials: 2 and 4.

The other exercises are for self-study and exam preparation. All material is examinable unless
otherwise mentioned.

Exercise 1. Visualising and analysing Gibbs distributions via undirected graphs

We here consider the Gibbs distribution

p(x1,...,z5) < dr2(z1, x2)Pp13(x1, x3)Pra(x1, Ta)P23(T2, 3) P25 (x2, T5) Pas (x4, T5)

a) Visualise it as an undirected graph.

b) What are the neighbours of z3 in the graph?

(a)

(b)

(¢) Do we have z3 I x4 | 1, 227

(d) What is the Markov blanket of z47?
)

(e) On which minimal set of variables A do we need to condition to have z 1L x5 | A?

Exercise 2. Factorisation and independencies for undirected graphical models

Consider the undirected graphical model defined by the graph in Figure 1.

Figure 1: Graph for Exercise 2

L6

(a) What is the set of Gibbs distributions that is induced by the graph?
(b) Let p be a pdf that factorises according to the graph. Does p(x3|xa, x4) = p(23]z4) hold?

(c) Explain why xo 1 x5 | x1,23,24,2¢ holds for all distributions that factorise over the
graph.

(d) Assume you would like to approximate E(zizexs | x3,24), i.e. the expected value of the
product of z1, x2, and x5 given x3 and z4, with a sample average. Do you need to have
joint observations for all five variables x1,...,x5?
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Exercise 3. Factorisation and independencies for undirected graphical models

Consider the undirected graphical model defined by the following graph, sometimes called a

diamond configuration.

(a) How do the pdfs/pmfs of the undirected graphical model factorise?

(b) List all independencies that hold for the undirected graphical model.

Exercise 4. Factorisation from the Markov blankets I

Assume you know the following Markov blankets for all variables z1,...,z4,y1,...ys4 of a pdf or
pmf p(ﬂfl, ey T4y Y1y ey 3/4)

MB(z1) = {z2,51} MB(22) = {x1, 23,92} MB(z3) = {22, 74,y3} MB(z4) = {z3,94} (1)
MB(y1) = {z1} MB(y2) = {z2} MB(y3) = {z3} MB(y4) = {z4} (2)

Assuming that p is positive for all possible values of its variables, how does p factorise?

Exercise 5. Factorisation from the Markov blankets I1

We consider the same setup as in Exercise 4 but we now assume that we do not know all Markov
blankets but only

MB(z1) = {z2,51} MB(22) = {x1, 23,92} MB(z3) = {22, 24,y3} MB(z4) = {z3,94} (3)

Without inserting more independencies than those specified by the Markov blankets, draw the
graph over which p factorises and state the factorisation. (Again assume that p is positive for
all possible values of its variables).

Exercise 6. Undirected graphical model with pairwise potentials

We here consider Gibbs distributions where the factors only depend on two variables at a time.

The probability density or mass functions over d random variables x1, ..., z4 then take the form
p(xlv e 7$d) X qulj(xla JI])
i<j

Such models are sometimes called pairwise Markov networks.

(a) Let p(z1,...,7q) o exp (—3x' Ax —b'x) where A is symmetric and x = (z1,...,24)".

What are the corresponding factors ¢;; for i < j7?

(b) For p(z1,...,2q4) x exp (—3x' Ax —b'x), show that z; AL z; | {z1,..., 24} \ {zi, 2;} if
the (i,7)-th element of A is zero.
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Exercise 7. Restricted Boltzmann machine (based on Barber Exercise 4.4)

The restricted Boltzmann machine is an undirected graphical model for binary variables v =
(v1,...,v,)" and h = (hy,...,hy)" with a probability mass function equal to

p(v,h) o exp <VTWh +a'v+ bTh> , (4)

where W is a n X m matrix. Both the v; and h; take values in {0,1}. The v; are called the
“visibles” variables since they are assumed to be observed while the h; are the hidden variables
since it is assumed that we cannot measure them.

(a) Use graph separation to show that the joint conditional p(h|v) factorises as

m

p(hlv) = [ p(hilv).

i=1

(b) Show that
1

1+ exp (—bi — Ej Wjivj>

where Wj; is the (ji)-th element of W, so that >, Wj;v; is the inner product (scalar
product) between the i-th column of W and v.

p(hi = 1]v) =

()

(¢) Use a symmetry argument to show that

1
1+ exp (—ai - Zj Wijhj)

p(V\h)ZHP(vz’Ih) and  p(v; = 1|h) =

Exercise 8. Hidden Markov models and change of measure

Consider the following undirected graph for a hidden Markov model where the y; correspond to
observed (visible) variables and the x; to unobserved (hidden/latent) variables.

a;l (22 —{(v3) ()

2 3

The graph implies the following factorisation

t

p(‘rh ey Tty Y1,k - )yt) X ¢21J(1‘17 yl) H Qﬁf(a}i—la xl)¢g($l7 y2)7 (6)
1=2

where the ¢¥ and ¢! are non-negative factors.

Let us consider the situation where [[i_, ¢ (z;_1,2;) equals

t t

F0) =T ¢ (@io1, i) = fi(er) [] filwilwio), (7)

=2 =2
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with x = (21, ...,2¢) and where the f; are (conditional) pdfs. We thus have

t t
p(mla ey Lty Y1y e et 7yt) X fl(l‘l) Hfl($1|$z—l) H ¢§J(‘/E27 yl) (8)
i=2 i=1
Provide a factorised expression for p(z1,...,2¢|y1, ..., yt)

Draw the undirected graph for p(z1,...,zy1, ..., yt)

Show that if ¢¥(z;,v;) equals the conditional pdf of y; given z;, i.e. p(y;|x;), the marginal
p(z1,...,x¢), obtained by integrating out yi,. ..,y from (8), equals f(x).

Compute the normalising constant for p(x1,...,z¢y1,...,y:) and express it as an expec-
tation over f(x).

Express the expectation of a test function h(x) with respect to p(z1,...,2¢|y1,...,y) as
a reweighted expectation with respect to f(x).
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