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Exercises for the tutorials: 2 and 4.

The other exercises are for self-study and exam preparation. All material is examinable unless otherwise
mentioned.

Exercise 1. Visualising and analysing Gibbs distributions via undirected graphs

We here consider the Gibbs distribution

p(x1, . . . , x5) ∝ φ12(x1, x2)φ13(x1, x3)φ14(x1, x4)φ23(x2, x3)φ25(x2, x5)φ45(x4, x5)

(a) Visualise it as an undirected graph.

Solution. We draw a node for each random variable xi. There is an edge between two
nodes if the corresponding variables co-occur in a factor.

x1

x2

x3

x4

x5

(b) What are the neighbours of x3 in the graph?

Solution. The neighbours are all the nodes for which there is a single connecting edge.
Thus: ne(x3) = {x1, x2}. (Note that sometimes, we may denote ne(x3) by ne3.)

(c) Do we have x3 ⊥⊥ x4 | x1, x2?

Solution. Yes. The conditioning set {x1, x2} equals ne3, which is also the Markov blan-
ket of x3. This means that x3 is conditionally independent of all the other variables given
{x1, x2}, i.e. x3 ⊥⊥ x4, x5 | x1, x2, which implies that x3 ⊥⊥ x4 | x1, x2. (One can also use
graph separation to answer the question.)

(d) What is the Markov blanket of x4?

Solution. The Markov blanket of a node in a undirected graphical model equals the set
of its neighbours: MB(x4) = ne(x4) = ne4 = {x1, x5}. This implies, for example, that
x4 ⊥⊥ x2, x3 | x1, x5.

(e) On which minimal set of variables A do we need to condition to have x1 ⊥⊥ x5 | A?

Solution. We first identify all trails from x1 to x5. There are three such trails: (x1, x2, x5),
(x1, x3, x2, x5), and (x1, x4, x5). Conditioning on x2 blocks the first two trails, conditioning
on x4 blocks the last. We thus have: x1 ⊥⊥ x5 | x2, x4, so that A = {x2, x4}.
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Exercise 2. Factorisation and independencies for undirected graphical models

Consider the undirected graphical model defined by the graph in Figure 1.

x1

x2

x3

x4

x5

x6

Figure 1: Graph for Exercise 2

(a) What is the set of Gibbs distributions that is induced by the graph?

Solution. The graph in Figure 1 has four maximal cliques:

(x1, x2, x4) (x1, x3, x4) (x3, x4, x5) (x4, x5, x6)

The Gibbs distributions are thus

p(x1, . . . , x6) ∝ φ1(x1, x2, x4)φ2(x1, x3, x4)φ3(x3, x4, x5)φ4(x4, x5, x6)

(b) Let p be a pdf that factorises according to the graph. Does p(x3|x2, x4) = p(x3|x4) hold?

Solution. p(x3|x2, x4) = p(x3|x4) means that x3 ⊥⊥ x2 | x4. We can use the graph to
check whether this generally holds for pdfs that factorise according to the graph. There
are multiple trails from x3 to x2, including the trail (x3, x1, x2), which is not blocked by x4.
From the graph, we thus cannot conclude that x3 ⊥⊥ x2 | x4, and p(x3|x2, x4) = p(x3|x4)
will generally not hold (the relation may hold for some carefully defined factors φi).

(c) Explain why x2 ⊥⊥ x5 | x1, x3, x4, x6 holds for all distributions that factorise over the graph.

Solution. Distributions that factorise over the graph satisfy the pairwise Markov prop-
erty. Since x2 and x5 are not neighbours, and x1, x3, x4, x6 are the remaining nodes in the
graph, the independence relation follows from the pairwise Markov property.

(d) Assume you would like to approximate E(x1x2x5 | x3, x4), i.e. the expected value of the product of
x1, x2, and x5 given x3 and x4, with a sample average. Do you need to have joint observations for
all five variables x1, . . . , x5?

Solution. In the graph, all trails from {x1, x2} to x5 are blocked by {x3, x4}, so that
x1, x2 ⊥⊥ x5 | x3, x4. We thus have

E(x1x2x5 | x3, x4) = E(x1x2 | x3, x4)E(x5 | x3, x4).

Hence, we only need joint observations of (x1, x2, x3, x4) and (x3, x4, x5). Variables (x1, x2)
and x5 do not need to be jointly measured.
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Exercise 3. Factorisation and independencies for undirected graphical models

Consider the undirected graphical model defined by the following graph, sometimes called a diamond
configuration.

w

x

y

z

(a) How do the pdfs/pmfs of the undirected graphical model factorise?

Solution. The maximal cliques are (x,w), (w, z), (z, y) and (x, y). The undirected
graphical model thus consists of pdfs/pmfs that factorise as follows

p(x,w, z, y) ∝ φ1(x,w)φ2(w, z)φ3(z, y)φ4(x, y) (S.1)

(b) List all independencies that hold for the undirected graphical model.

Solution. We can generate the independencies by conditioning on progressively larger
sets. Since there is a trail between any two nodes, there are no unconditional independen-
cies. If we condition on a single variable, there is still a trail that connects the remaining
ones. Let us thus consider the case where we condition on two nodes. By graph separation,
we have

w ⊥⊥ y | x, z x ⊥⊥ z | w, y (S.2)

These are all the independencies that hold for the model, since conditioning on three nodes
does not lead to any independencies in a model with four variables.

Exercise 4. Factorisation from the Markov blankets I

Assume you know the following Markov blankets for all variables x1, . . . , x4, y1, . . . y4 of a pdf or pmf
p(x1, . . . , x4, y1, . . . , y4).

MB(x1) = {x2, y1} MB(x2) = {x1, x3, y2} MB(x3) = {x2, x4, y3} MB(x4) = {x3, y4} (1)

MB(y1) = {x1} MB(y2) = {x2} MB(y3) = {x3} MB(y4) = {x4} (2)

Assuming that p is positive for all possible values of its variables, how does p factorise?

Solution. In undirected graphical models, the Markov blanket for a variable is the same as
the set of its neighbours. Hence, when we are given all Markov blankets we know what local
Markov property p must satisfy. For positive distributions we have an equivalence between p
satisfying the local Markov property and p factorising over the graph. Hence, to specify the
factorisation of p it suffices to construct the undirected graph H based on the Markov blankets
and then read out the factorisation.

We need to build a graph where the neighbours of each variable equals the indicated Markov
blanket. This can be easily done by starting with an empty graph and connecting each variable
to the variables in its Markov blanket.
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We see that each yi is only connected to xi. Including those Markov blankets we get the following
graph:

y1 y2 y3 y4

x1 x2 x3 x4

Connecting the xi to their neighbours according to the Markov blanket thus gives:

y1 y2 y3 y4

x1 x2 x3 x4

The graph has maximal cliques of size two, namely the xi− yi for i = 1, . . . , 4, and the xi−xi+1

for i = 1, . . . , 3. Given the equivalence between the local Markov property and factorisation for
positive distributions, we know that p must factorise as

p(x1, . . . , x4, y1, . . . , y4) =
1

Z

3∏
i=1

mi(xi, xi+1)
4∏

i=1

gi(xi, yi), (S.3)

where mi(xi, xi+1) > 0, g(xi, yi) > 0 are positive factors (potential functions).

The graphical model corresponds to an undirected version of a hidden Markov model where the
xi are the unobserved (latent, hidden) variables and the yi are the observed ones. Note that the
xi form a Markov chain.

Exercise 5. Factorisation from the Markov blankets II

We consider the same setup as in Exercise 4 but we now assume that we do not know all Markov blankets
but only

MB(x1) = {x2, y1} MB(x2) = {x1, x3, y2} MB(x3) = {x2, x4, y3} MB(x4) = {x3, y4} (3)

Without inserting more independencies than those specified by the Markov blankets, draw the graph over
which p factorises and state the factorisation. (Again assume that p is positive for all possible values of
its variables).

Solution. We take the same approach as in Exercise 4. In particular, the Markov blankets of
a variable are its neighbours in the graph. But since we are not given all Markov blankets and
are not allowed to insert additional independencies, we must assume that each yi is connected
to all the other y′s. For example, if we didn’t connect y1 and y4 we would assert the additional
independency y1 ⊥⊥ y4 | x1, x2, x3, x4, y2, y3.

We thus have a graph as follows:
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y1 y2 y3 y4

x1 x2 x3 x4

The factorisation thus is

p(x1, . . . , x4, y1, . . . , y4) =
1

Z
g(y1, . . . , y4)

3∏
i=1

mi(xi, xi+1)

4∏
i=1

gi(xi, yi), (S.4)

where the mi(xi, xi+1), gi(xi, yi) and g(y1, . . . , y4) are positive factors. Compared to the fac-
torisation in Exercise 4, we still have the Markov structure for the xi, but only a single factor
for (y1, y2, y3, y4) to avoid inserting independencies beyond those specified by the given Markov
blankets.

Exercise 6. Undirected graphical model with pairwise potentials

We here consider Gibbs distributions where the factors only depend on two variables at a time. The
probability density or mass functions over d random variables x1, . . . , xd then take the form

p(x1, . . . , xd) ∝
∏
i≤j

φij(xi, xj)

Such models are sometimes called pairwise Markov networks.

(a) Let p(x1, . . . , xd) ∝ exp
(
− 1

2x
>Ax− b>x

)
where A is symmetric and x = (x1, . . . , xd)>. What

are the corresponding factors φij for i ≤ j?

Solution. Denote the (i, j)-th element of A by aij . We have

x>Ax =
∑
ij

aijxixj (S.5)

=
∑
i<j

2aijxixj +
∑
i

aiix
2
i (S.6)

where the second line follows from A> = A. Hence,

−1

2
x>Ax− b>x = −1

2

∑
i<j

2aijxixj −
1

2

∑
i

aiix
2
i −

∑
i

bixi (S.7)

so that

φij(xi, xj) =

{
exp (−aijxixj) if i < j

exp
(
−1

2aiix
2
i − bixi

)
if i = j

(S.8)

For x ∈ Rd, the distribution is a Gaussian with A equal to the inverse covariance matrix.
For binary x, the model is known as Ising model or Boltzmann machine. For xi ∈ {−1, 1},
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x2i = 1 for all i, so that the aii are constants that can be absorbed into the normalisation
constant. This means that for xi ∈ {−1, 1}, we can work with matrices A that have zeros
on the diagonal.

(b) For p(x1, . . . , xd) ∝ exp
(
− 1

2x
>Ax− b>x

)
, show that xi ⊥⊥ xj | {x1, . . . , xd} \ {xi, xj} if the

(i, j)-th element of A is zero.

Solution. The previous question showed that we can write p(x1, . . . , xd) ∝
∏

i≤j φij(xi, xj)
with potentials as in Equation (S.8). Consider two variables xi and xj for fixed (i, j). They
only appear in the factorisation via the potential φij . If aij = 0, the factor φij becomes
a constant, and no other factor contains xi and xj , which means that there is no edge
between xi and xj if aij = 0. By the pairwise Markov property it then follows that
xi ⊥⊥ xj | {x1, . . . , xd} \ {xi, xj}.

Exercise 7. Restricted Boltzmann machine (based on Barber Exercise 4.4)

The restricted Boltzmann machine is an undirected graphical model for binary variables v = (v1, . . . , vn)>

and h = (h1, . . . , hm)> with a probability mass function equal to

p(v,h) ∝ exp
(
v>Wh + a>v + b>h

)
, (4)

where W is a n ×m matrix. Both the vi and hi take values in {0, 1}. The vi are called the “visibles”
variables since they are assumed to be observed while the hi are the hidden variables since it is assumed
that we cannot measure them.

(a) Use graph separation to show that the joint conditional p(h|v) factorises as

p(h|v) =

m∏
i=1

p(hi|v).

Solution. Figure 2 on the left shows the undirected graph for p(v,h) with n = 3,m = 2.
We note that the graph is bi-partite: there are only direct connections between the hi and
the vi. Conditioning on v thus blocks all trails between the hi (graph on the right). This
means that the hi are independent from each other given v so that

p(h|v) =

m∏
i=1

p(hi|v).

h1 h2

v1 v2 v3

h1 h2

v1 v2 v3

Figure 2: Left: Graph for p(v,h). Right: Graph for p(h|v)
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(b) Show that

p(hi = 1|v) =
1

1 + exp
(
−bi −

∑
j Wjivj

) (5)

where Wji is the (ji)-th element of W, so that
∑

j Wjivj is the inner product (scalar product)

between the i-th column of W and v.

Solution. For the conditional pmf p(hi|v) any quantity that does not depend on hi can
be considered to be part of the normalisation constant. A general strategy is to first work
out p(hi|v) up to the normalisation constant and then to normalise it afterwards.

We begin with p(h|v):

p(h|v) =
p(h,v)

p(v)
(S.9)

∝ p(h,v) (S.10)

∝ exp
(
v>Wh + a>v + b>h

)
(S.11)

∝ exp
(
v>Wh + b>h

)
(S.12)

∝ exp

∑
i

∑
j

vjWjihi +
∑
i

bihi

 (S.13)

As we are interested in p(hi|v) for a fixed i, we can drop all the terms not depending on
that hi, so that

p(hi|v) ∝ exp

∑
j

vjWjihi + bihi

 (S.14)

Since hi only takes two values, 0 and 1, normalisation is here straightforward. Call the
unnormalised pmf p̃(hi|v),

p̃(hi|v) = exp

∑
j

vjWjihi + bihi

 . (S.15)

We then have

p(hi|v) =
p̃(hi|v)

p̃(hi = 0|v) + p̃(hi = 1|v)
(S.16)

=
p̃(hi|v)

1 + exp
(∑

j vjWji + bi

) (S.17)

=
exp

(∑
j vjWjihi + bihi

)
1 + exp

(∑
j vjWji + bi

) , (S.18)

so that

p(hi = 1|v) =
exp

(∑
j vjWji + bi

)
1 + exp

(∑
j vjWji + bi

) (S.19)

=
1

1 + exp
(
−
∑

j vjWji − bi
) . (S.20)
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The probability p(h = 0|v) equals 1− p(hi = 1|v), which is

p(hi = 0|v) =
1 + exp

(∑
j vjWji + bi

)
1 + exp

(∑
j vjWji + bi

) − exp
(∑

j vjWji + bi

)
1 + exp

(∑
j vjWji + bi

) (S.21)

=
1

1 + exp
(∑

j Wjivj + bi

) (S.22)

The function x 7→ 1/(1 + exp(−x)) is called the logistic function. It is a sigmoid function
and is thus sometimes denoted by σ(x). For other versions of the sigmoid function, see
https://en.wikipedia.org/wiki/Sigmoid_function.

−6 −4 −2 2 4 6

0.2

0.4

0.6

0.8

x

σ(x)

With that notation, we have

p(hi = 1|v) = σ

∑
j

Wjivj + bi

 .

(c) Use a symmetry argument to show that

p(v|h) =
∏
i

p(vi|h) and p(vi = 1|h) =
1

1 + exp
(
−ai −

∑
j Wijhj

)
Solution. Since v>Wh is a scalar we have (v>Wh)> = h>W>v = v>Wh, so that

p(v,h) ∝ exp
(
v>Wh + a>v + b>h

)
(S.23)

∝ exp
(
h>W>v + b>h + a>v

)
. (S.24)

To derive the result, we note that v and a now take the place of h and b from before, and
that we now have W> rather than W. In Equation (5), we thus replace hi with vi, bi with
ai, and Wji with Wij to obtain p(vi = 1|h). In terms of the sigmoid function, we have

p(vi = 1|h) = σ

∑
j

Wijhj + ai

 .
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Note that while p(v|h) factorises, the marginal p(v) does generally not. The marginal
p(v) can here be obtained in closed form up to its normalisation constant.

p(v) =
∑

h∈{0,1}m
p(v,h) (S.25)

=
1

Z

∑
h∈{0,1}m

exp
(
v>Wh + a>v + b>h

)
(S.26)

=
1

Z

∑
h∈{0,1}m

exp

∑
ij

vihjWij +
∑
i

aivi +
∑
j

bjhj

 (S.27)

=
1

Z

∑
h∈{0,1}m

exp

 m∑
j=1

hj

[∑
i

viWij + bj

]
+
∑
i

aivi

 (S.28)

=
1

Z

∑
h∈{0,1}m

m∏
j=1

exp

(
hj

[∑
i

viWij + bj

])
exp

(∑
i

aivi

)
(S.29)

=
1

Z
exp

(∑
i

aivi

) ∑
h∈{0,1}m

m∏
j=1

exp

(
hj

[∑
i

viWij + bj

])
(S.30)

=
1

Z
exp

(∑
i

aivi

) ∑
h1,...,hm

m∏
j=1

exp

(
hj

[∑
i

viWij + bj

])
(S.31)

Importantly, each term in the product only depends on a single hj , so that by sequentially
applying the distributive law, we have

∑
h1,...,hm

m∏
j=1

exp

(
hj

[∑
i

viWij + bj

])
=

 ∑
h1,...,hm−1

m−1∏
j=1

exp

(
hj

[∑
i

viWij + bj

]) ·
∑
hm

exp

(
hm

[∑
i

viWim + bm

])
(S.32)

= . . .

=
m∏
j=1

∑
hj

exp

(
hj

[∑
i

viWij + bj

]) (S.33)

Since hj ∈ {0, 1}, we obtain

∑
hj

exp

(
hj

[∑
i

viWij + bj

])
= 1 + exp

(∑
i

viWij + bj

)
(S.34)

and thus

p(v) =
1

Z
exp

(∑
i

aivi

)
m∏
j=1

[
1 + exp

(∑
i

viWij + bj

)]
. (S.35)

Note that in the derivation of p(v) we have not used the assumption that the visibles vi are
binary. The same expression would thus obtained if the visibles were defined in another
space, e.g. the real numbers.
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While p(v) is written as a product, p(v) does not factorise into terms that depend on
subsets of the vi. On the contrary, all vi are present in all factors. Since p(v) does not
factorise, computing the normalising Z is expensive. For binary visibles vi ∈ {0, 1}, Z
equals

Z =
∑

v∈{0,1}n
exp

(∑
i

aivi

)
m∏
j=1

[
1 + exp

(∑
i

viWij + bj

)]
(S.36)

where we have to sum over all 2n configurations of the visibles v. This is computationally
expensive, or even prohibitive if n is large (220 = 1048576, 230 > 109). Note that different
values of ai, bi,Wij yield different values of Z. (This is a reason why Z is called the
partition function when the ai, bi,Wij are free parameters.)

It is instructive to write p(v) in the log-domain,

log p(v) = logZ +
n∑

i=1

aivi +
m∑
j=1

log

[
1 + exp

(∑
i

viWij + bj

)]
, (S.37)

and to introduce the nonlinearity f(u),

f(u) = log [1 + exp(u)] , (S.38)

which is called the softplus function and plotted below. The softplus function is a smooth
approximation of max(0, u), see e.g. https://en.wikipedia.org/wiki/Rectifier_(neural_
networks)

−6 −4 −2 2 4 6

2

4

6

u

f(u)

With the softplus function f(u), we can write log p(v) as

log p(v) = logZ +

n∑
i=1

aivi +

m∑
j=1

f

(∑
i

viWij + bj

)
. (S.39)

The parameter bj plays the role of a threshold as shown in the figure below. The terms
f (
∑

i viWij + bj) can be interpreted in terms of feature detection. The sum
∑

i viWij is
the inner product between v and the j-th column of W, and the inner product is largest if
v equals the j-th column. We can thus consider the columns of W to be feature-templates,
and the f (

∑
i viWij + bj) a way to measure how much of each feature is present in v.
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Further,
∑

i viWij + bj is also the input to the sigmoid function when computing p(hj =
1|v). Thus, the conditional probability for hj to be one, i.e. “active”, can be considered
to be an indicator of the presence of the j-th feature (j-th column of W) in the input v.

If v is such that
∑

i viWij + bj is large for many j, i.e. if many features are detected, then
f (
∑

i viWij + bj) will be non-zero for many j, and log p(v) will be large.

−6 −4 −2 2 4 6

2

4

6

8

f(u)

f(u+ 2)

f(u− 2)

u

f(u)

Exercise 8. Hidden Markov models and change of measure

Consider the following undirected graph for a hidden Markov model where the yi correspond to observed
(visible) variables and the xi to unobserved (hidden/latent) variables.

x1 x2 x3 . . .

. . .

xt

y1 y2 y3 yt

The graph implies the following factorisation

p(x1, . . . , xt, y1, . . . , yt) ∝ φy1(x1, y1)

t∏
i=2

φxi (xi−1, xi)φ
y
i (xi, yi), (6)

where the φxi and φyi are non-negative factors.

Let us consider the situation where
∏t

i=2 φ
x
i (xi−1, xi) equals

f(x) =

t∏
i=2

φxi (xi−1, xi) = f1(x1)

t∏
i=2

fi(xi|xi−1), (7)

with x = (x1, . . . , xt) and where the fi are (conditional) pdfs. We thus have

p(x1, . . . , xt, y1, . . . , yt) ∝ f1(x1)

t∏
i=2

fi(xi|xi−1)

t∏
i=1

φyi (xi, yi). (8)

(a) Provide a factorised expression for p(x1, . . . , xt|y1, . . . , yt)
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Solution. For fixed (observed) values of the yi, p(x1, . . . , xt|y1, . . . , yt) factorises as

p(x1, . . . , xt|y1, . . . , yt) ∝ f1(x1)g1(x1)
t∏

i=2

fi(xi|xi−1)gi(xi). (S.40)

where gi(xi) is φyi (xi, yi) for a fixed value of yi.

(b) Draw the undirected graph for p(x1, . . . , xt|y1, . . . , yt)

Solution. Conditioning corresponds to removing nodes from an undirected graph. We
thus have the following Markov chain for p(x1, . . . , xt|y1, . . . , yt).

x1 x2 x3 . . . xt

(c) Show that if φyi (xi, yi) equals the conditional pdf of yi given xi, i.e. p(yi|xi), the marginal p(x1, . . . , xt),
obtained by integrating out y1, . . . , yt from (8), equals f(x).

Solution. In this setting all factors in (8) are conditional pdfs and we are dealing with
a directed graphical model that factorises as

p(x1, . . . , xt, y1, . . . , yt) = f1(x1)

t∏
i=2

fi(xi|xi−1)
t∏

i=1

p(yi|xi). (S.41)

By integrating over the yi, we have

p(x1, . . . , xt) =

∫
p(x1, . . . , xt, y1, . . . , yt)dy1 . . . dyt (S.42)

= f1(x1)
t∏

i=2

fi(xi|xi−1)
∫ t∏

i=1

p(yi|xi)dy1 . . . dyt (S.43)

= f1(x1)
t∏

i=2

fi(xi|xi−1)
t∏

i=1

∫
p(yi|xi)dyi︸ ︷︷ ︸

1

(S.44)

= f1(x1)

t∏
i=2

fi(xi|xi−1) (S.45)

= f(x) (S.46)

(d) Compute the normalising constant for p(x1, . . . , xt|y1, . . . , yt) and express it as an expectation over

f(x).

Solution. With

p(x1, . . . , xt, y1, . . . , yt) ∝ f1(x1)
t∏

i=2

fi(xi|xi−1)
t∏

i=1

φyi (xi, yi). (S.47)
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The normalising constant is given by

Z =

∫
f1(x1)

t∏
2=1

fi(xi|xi−1)
t∏

i=1

gi(xi)dx1 . . . dxt (S.48)

= Ef

[
t∏

i=1

gi(xi)

]
(S.49)

Since we can use ancestral sampling to sample from f , the above expectation can be easily
computed via sampling.

(e) Express the expectation of a test function h(x) with respect to p(x1, . . . , xt|y1, . . . , yt) as a reweighted
expectation with respect to f(x).

Solution. By definition, the expectation over a test function h(x) is

Ep(x1,...,xt|y1,...,yt)[h(x)] =
1

Z

∫
h(x)f1(x1)

t∏
i=2

f(xi|xi−1)
t∏

i=1

gi(xi)dx1 . . . dxt (S.50)

=
Ef [h(x)

∏
i gi(xi)]

Ef [
∏

i gi(xi)]
(S.51)

Both the numerator and denominator can be approximated using samples from f .

Since the gi(xi) = φyi (xi, yi) involve the observed variables yi, this has a nice interpretation:
We can think we have two models for x: f(x) that does not involve the observations and
p(x1, . . . , xt|y1, . . . , yt) that does. Note, however, that unless φyi (xi, yi) is the conditional
pdf p(yi|xi), f(x) is not the marginal p(x1, . . . , xt) that you would obtain by integrating
out the y’s from the joint model . We can thus generally think it is a base distribution
that got “enhanced” by a change of measure in our expression for p(x1, . . . , xt|y1, . . . , yt).
If φyi (xi, yi) is the conditional pdf p(yi|xi), the change of measure corresponds to going
from the prior to the posterior by multiplication with the likelihood (the terms gi).

From the expression for the expectation, we can see that the “enhancing” leads to a
corresponding introduction of weights in the expectation that depend via gi on the ob-
servations. This can be particularly well seen when we approximate the expectation as a
sample average over n samples x(k) ∼ f(x):

Ep(x1,...,xt|y1,...,yt)[h(x)] ≈
n∑

k=1

W (k)h(x(k)) (S.52)

W (k) =
w(k)∑n
k=1w

(k)
(S.53)

w(k) =
∏
i

gi(x
(k)
i ) (S.54)

where x
(k)
i is the i-th dimension of the vector x(k).
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