@ R — Probabilistic Modelling and Reasoning Spring 2023
‘& informatics Exercises 2 — Notes Hodari & Gutmann

These notes are intended to give a summary of relevant concepts from the lectures which are
helpful to complete the exercises. It is not intended to cover the lectures thoroughly. Learning
this content is not a replacement for working through the lecture material and the exercises.

Factorisation and independence— For two non-negative functions ¢4 and ¢p:
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Gibbs distribution — A class of pdfs/pmfs that factorise into factors of sets of variables.
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Energy based model — A model where energy functions are used in place of factors, this
is useful as we can work with sums of energies which are in log-space.
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Undirected graphical model — All variables z; are associated with one node, each set of

variables &, for a factor ¢, are maximally connected with edges.
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Independence and separation in undirected graphical models — Two sets of variables
X and Y are separated by Z if, after removing the Z-nodes, there is no path between any variable
x € X and y € Y. Implies conditional independence for all distributions p that factorise over
the graph. They satisfy the global Markov property relative to the undirected graph.

Local Markov property — A distribution p(x) satisfies the local Markov property relative
to an undirected graph if
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holds for p.
Pairwise Markov property — A distribution p(x) satisfies the pairwise Markov property
relative to an undirected graph if
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holds for p.



