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Exercises for the tutorials: 1, 2(a-b), 3.

The other exercises are for self-study and exam preparation. All material is examinable unless otherwise
mentioned.

Exercise 1. Directed graph concepts

We here consider the directed graph below that was partly discussed in the lecture.

a z

q

e

h

(a) List all trails in the graph (of maximal length)

Solution. We have
(a, q, e) (a, q, z, h) (h, z, q, e)

and the corresponding ones with swapped start and end nodes.

(b) List all directed paths in the graph (of maximal length)

Solution. (a, q, e) (z, q, e) (z, h)

(c) What are the descendants of z?

Solution. desc(z) = {q, e, h}

(d) What are the non-descendants of q?

Solution. nondesc(q) = {a, z, h, e} \ {e} = {a, z, h}

(e) Which of the following orderings are topological to the graph?

• (a,z,h,q,e)

• (a,z,e,h,q)

• (z,a,q,h,e)

• (z,q,e,a,h)

Solution.

• (a,z,h,q,e): yes

• (a,z,e,h,q): no (q is a parent of e and thus has to come before e in the ordering)

• (z,a,q,h,e): yes

• (z,q,e,a,h): no (a is a parent of q and thus has to come before q in the ordering)
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Exercise 2. Canonical connections

We here derive the independencies that hold in the three canonical connections that exist in DAGs, shown
in Figure 1.

x z y

(a) Serial connection

x z y

(b) Diverging connection

x z y

(c) Converging connection

Figure 1: The three canonical connections in DAGs.

(a) For the serial connection, use the ordered Markov property to show that x ⊥⊥ y | z.

Solution. The only topological ordering is x, z, y. The predecessors of y are prey = {x, z}
and its parents pay = {z}. The ordered Markov property

y ⊥⊥ (prey \ pay) | pay (S.1)

thus becomes y ⊥⊥ ({x, z} \ z) | z. Hence we have

y ⊥⊥ x | z, (S.2)

which is the same as x ⊥⊥ y | z since the indepedency relationship is symmetric.

This means that if the state or value of z is known (i.e. if the random variable z is
“instantiated”), evidence about x will not change our belief about y, and vice versa. We
say that the z node is “closed” and that the trail between x and y is “blocked” by the
instantiated z. In other words, knowing the value of z blocks the flow of evidence between
x and y.

(b) For the serial connection, show that the marginal p(x, y) does generally not factorise into p(x)p(y),

i.e. that x ⊥⊥ y does not hold.

Solution. There are several ways to show the result. One is to present an example where
the independency does not hold. Consider for instance the following model

x ∼ N (x; 0, 1) (S.3)

z = x+ nz (S.4)

y = z + ny (S.5)

where nz ∼ N (nz; 0, 1) and ny ∼ N (ny; 0, 1), both being statistically independent from x.
Here N (·; 0, 1) denotes the Gaussian pdf with mean 0 and variance 1, and x ∼ N (x; 0, 1)
means that we sample x from the distribution N (x; 0, 1). Hence p(z|x) = N (z;x, 1),
p(y|z) = N (y; z, 1) and p(x, y, z) = p(x)p(z|x)p(y|z) = N (x; 0, 1)N (z;x, 1)N (y; z, 1).

Whilst we could manipulate the pdfs to show the result, it’s here easier to work with
the generative model in Equations (S.3) to (S.5). Eliminating z from the equations, by
plugging the definition of z into (S.5) we have

y = x+ nz + ny, (S.6)
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which describes the marginal distribution of (x, y). We see that E[xy] is

E[xy] = E[x2 + xnz + xny] (S.7)

= E[x2] + E[x]E[nz] + E[x]E[ny] (S.8)

= 1 + 0 + 0 (S.9)

where we have use the linearity of expectation, that x is independent from nz and ny,
and that x has zero mean. If x and y were independent (or only uncorrelated), we had
E[xy] = E[x]E[y] = 0. However, since E[xy] 6= E[x]E[y], x and y are not independent.

In plain English, this means that if the state of z is unknown, then evidence or information
about x will influence our belief about y, and the other way around. Evidence can flow
through z between x and y. We say that the z node is “open” and the trail between x and
y is “active”.

(c) For the diverging connection, use the ordered Markov property to show that x ⊥⊥ y | z.

Solution. A topological ordering is z, x, y. The predecessors of y are prey = {x, z} and
its parents pay = {z}. The ordered Markov property

y ⊥⊥ (prey \ pay) | pay (S.10)

thus becomes again
y ⊥⊥ x | z, (S.11)

which is, since the independence relationship is symmetric, the same as x ⊥⊥ z | z.
As in the serial connection, if the state or value z is known, evidence about x will not
change our belief about y, and vice versa. Knowing z closes the z node, which blocks the
trail between x and y.

(d) For the diverging connection, show that the marginal p(x, y) does generaly not factorise into
p(x)p(y), i.e. that x ⊥⊥ y does not hold.

Solution. As for the serial connection, it suffices to give an example where x ⊥⊥ y does
not hold. We consider the following generative model

z ∼ N (z; 0, 1) (S.12)

x = z + nx (S.13)

y = z + ny (S.14)

where nx ∼ N (nx; 0, 1) and ny ∼ N (ny; 0, 1), and they are independent of each other and
the other variables. We have E[x] = E[z + nx] = E[z] + E[nx] = 0. On the other hand

E[xy] = E[(z + nx)(z + ny)] (S.15)

= E[z2 + z(nx + ny) + nxny] (S.16)

= E[z2] + E[z(nx + ny)] + E[nxny] (S.17)

= 1 + 0 + 0 (S.18)

Hence, E[xy] 6= E[x]E[y] and we do not have that x ⊥⊥ y holds.

In a diverging connection, as in the serial connection, if the state of z is unknown, then
evidence or information about x will influence our belief about y, and the other way
around. Evidence can flow through z between x and y. We say that the z node is open
and the trail between x and y is active.

(e) For the converging connection, show that x ⊥⊥ y.
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Solution. We can here again use the ordered Markov property with the ordering y, x, z.
Since prex = {y} and pax = ∅, we have

x ⊥⊥ (prex \ pax) | pax = x ⊥⊥ y. (S.19)

Alternatively, we can use the basic definition of directed graphical models, i.e.

p(x, y, z) = k(x)k(y)k(z | x, y) (S.20)

together with the result that the kernels (factors) are valid (conditional) pdfs/pmfs and
equal to the conditionals/marginals with respect to the joint distribution p(x, y, z), i.e.

k(x) = p(x) (S.21)

k(y) = p(y) (S.22)

k(z|x, y) = p(z|x, y) (not needed in the proof below) (S.23)

Integrating out z gives

p(x, y) =

∫
p(x, y, z)dz (S.24)

=

∫
k(x)k(y)k(z | x, y)dz (S.25)

= k(x)k(y)

∫
k(z | x, y)dz︸ ︷︷ ︸

1

(S.26)

= p(x)p(y) (S.27)

Hence p(x, y) factorises into its marginals, which means that x ⊥⊥ y.

Hence, when we do not have evidence about z, evidence about x will not change our belief
about y, and vice versa. For the converging connection, if no evidence about z is available,
the z node is closed, which blocks the trail between x and y.

(f) For the converging connection, show that x ⊥⊥ y | z does generally not hold.

Solution. We give a simple example where x ⊥⊥ y | z does not hold.

Consider

x ∼ N (x; 0, 1) (S.28)

y ∼ N (y; 0, 1) (S.29)

z = xy + nz (S.30)

where nz ∼ N (nz; 0, 1), independent from the other variables. From the last equation, we
have

xy = z − nz (S.31)

We thus have

E[xy | z] = E[z − nz | z] (S.32)

= z − 0 (S.33)

On the other hand, E[xy] = E[x]E[y] = 0. Since E[xy | z] 6= E[xy], x ⊥⊥ y | z cannot hold.
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The intuition here is that if you know the value of the product xy, even if subject to noise,
knowing the value of x allows you to guess the value of y and vice versa.

More generally, for converging connections, if evidence or information about z is available,
evidence about x will influence the belief about y, and vice versa. We say that information
about z opens the z-node, and evidence can flow between x and y.

Note: information about z means that z or one of its descendents is observed, see exercise
9.

Exercise 3. Ordered and local Markov properties, d-separation

We continue with the investigation of the graph from Exercise 1 shown below for reference.

a z

q

e

h

(a) The ordering (z, h, a, q, e) is topological to the graph. What are the independencies that follow from
the ordered Markov property?

Solution. We proceed as in the lecture slides: The predecessor sets are

prez = ∅, preh = {z},prea = {z, h},preq = {z, h, a}, pree = {z, h, a, q}

The parent sets are independent from the topological ordering chosen. In the lecture, we
have seen that they are:

paz = ∅,pah = {z},paa = ∅,paq = {a, z},pae = {q},

The ordered Markov property reads xi ⊥⊥ (prei \ pai) | pai where the xi refer to the ordered
variables, e.g. x1 = z, x2 = h, x3 = a, etc.

With

preh \ pah = ∅ prea \ paa = {z, h} preq \ paq = {h} pree \ pae = {z, h, a}

we thus obtain

h ⊥⊥ ∅ | z a ⊥⊥ {z, h} q ⊥⊥ h | {a, z} e ⊥⊥ {z, h, a} | q

The relation h ⊥⊥ ∅ | z should be understood as “there is no variable from which h is
independent given z” and should thus be dropped from the list. Compared to the relations
obtained for the orderings in the lecture, the new one here is a ⊥⊥ {z, h}. Generally,
having a variable later in the topological ordering allows one to possibly obtain a stronger
independence relation because the set pre \ pa can only increase when the predecessor set
pre becomes larger.

(b) What are the independencies that follow from the local Markov property?
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Solution. The non-descendants are

nondesc(a) = {z, h} nondesc(z) = {a} nondesc(h) = {a, z, q, e}

nondesc(q) = {a, z, h} nondesc(e) = {a, q, z, h}

With the parent sets as before, the independencies that follow from the local Markov
property are xi ⊥⊥ (nondesc(xi) \ pai) | pai, i.e.

a ⊥⊥ {z, h} z ⊥⊥ a h ⊥⊥ {a, q, e} | z q ⊥⊥ h | {a, z} e ⊥⊥ {a, z, h} | q

(c) The independency relations obtained via the ordered and local Markov property include q ⊥⊥ h |
{a, z}. Verify the independency using d-separation.

Solution. The only trail from q to h goes through z which is in a tail-tail configuration.
Since z is part of the conditioning set, the trail is blocked and the result follows.

(d) Use d-separation to check whether a ⊥⊥ h | e holds.

Solution. The trail from a to h is shown below in red together with the default states
of the nodes along the trail.

a z

q

e

hclosed

open

Conditioning on e opens the q node since q in a collider configuration on the path.

a z

q

e

hopen

open

The trail from a to h is thus active, which means that the relationship does not hold
because a 6⊥⊥ h | e for some distributions that factorise over the graph.

(e) Assume all variables in the graph are binary. How many numbers do you need to specify, or learn

from data, in order to fully specify the probability distribution?
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Solution. The graph defines a set of probability mass functions (pmf) that factorise as

p(a, z, q, h, e) = p(a)p(z)p(q|a, z)p(h|z)p(e|q)

To specify a member of the set, we need to specify the (conditional) pmfs on the right-hand
side. The (conditional) pmfs can be seen as tables, and the number of elements that we
need to specified in the tables are:
- 1 for p(a)
- 1 for p(z)
- 4 for p(q|a, z)
- 2 for p(h|z)
- 2 for p(e|q)
In total, there are 10 numbers to specify. This is in contrast to 25−1 = 31 for a distribution
without independencies. Note that the number of parameters to specify could be further
reduced by making parametric assumptions.

Exercise 4. More on ordered and local Markov properties, d-separation

We continue with the investigation of the graph below

a z

q

e

h

(a) Why can the ordered or local Markov property not be used to check whether a ⊥⊥ h | e may hold?

Solution. The independencies that follow from the ordered or local Markov property
require conditioning on parent sets. However, e is not a parent of any node so that the
above independence assertion cannot be checked via the ordered or local Markov property.

(b) The independency relations obtained via the ordered and local Markov property include a ⊥⊥ {z, h}.
Verify the independency using d-separation.

Solution. All paths from a to z or h pass through the node q that forms a head-head
connection along that trail. Since neither q nor its descendant e is part of the conditioning
set, the trail is blocked and the independence relation follows.

(c) Determine the Markov blanket of z.

Solution. The Markov blanket is given by the parents, children, and co-parents. Hence:
MB(z) = {a, q, h}.

(d) Verify that q ⊥⊥ h | {a, z} holds by manipulating the probability distribution induced by the graph.
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Solution. A basic definition of conditional statistical independence x1 ⊥⊥ x2 | x3 is that
the (conditional) joint p(x1, x2 | x3) equals the product of the (conditional) marginals
p(x1 | x3) and p(x2 | x3). In other words, for discrete random variables,

x1 ⊥⊥ x2 | x3 ⇐⇒ p(x1, x2 | x3) =

(∑
x2

p(x1, x2 | x3)

)(∑
x1

p(x1, x2 | x3)

)
(S.34)

We thus answer the question by showing that (use integrals in case of continuous random
variables)

p(q, h|a, z) =

(∑
h

p(q, h|a, z)

)(∑
q

p(q, h|a, z)

)
(S.35)

First, note that the graph defines a set of probability density or mass functions that
factorise as

p(a, z, q, h, e) = p(a)p(z)p(q|a, z)p(h|z)p(e|q)
We then use the sum-rule to compute the joint distribution of (a, z, q, h), i.e. the distribu-
tion of all the variables that occur in p(q, h|a, z)

p(a, z, q, h) =
∑
e

p(a, z, q, h, e) (S.36)

=
∑
e

p(a)p(z)p(q|a, z)p(h|z)p(e|q) (S.37)

= p(a)p(z)p(q|a, z)p(h|z)
∑
e

p(e|q)︸ ︷︷ ︸
1

(S.38)

= p(a)p(z)p(q|a, z)p(h|z), (S.39)

where
∑

e p(e|q) = 1 because (conditional) pdfs/pmfs are normalised so that the inte-
grate/sum to one. We further have

p(a, z) =
∑
q,h

p(a, z, q, h) (S.40)

=
∑
q,h

p(a)p(z)p(q|a, z)p(h|z) (S.41)

= p(a)p(z)
∑
q

p(q|a, z)
∑
h

p(h|z) (S.42)

= p(a)p(z) (S.43)

so that

p(q, h|a, z) =
p(a, z, q, h)

p(a, z)
(S.44)

=
p(a)p(z)p(q|a, z)p(h|z)

p(a)p(z)
(S.45)

= p(q|a, z)p(h|z). (S.46)

We further see that p(q|a, z) and p(h|z) are the marginals of p(q, h|a, z), i.e.

p(q|a, z) =
∑
h

p(q, h|a, z) (S.47)

p(h|z) =
∑
q

p(q, h|a, z). (S.48)
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This means that

p(q, h|a, z) =

(∑
h

p(q, h|a, z)

)(∑
q

p(q, h|a, z)

)
, (S.49)

which shows that q ⊥⊥ h|a, z.
We see that using the graph to determine the independency is easier than manipulating
the pmf/pdf.

Exercise 5. Chest clinic (based on Barber’s exercise 3.3)

The directed graphical model in Figure 2 is about the diagnosis of lung disease (t=tuberculosis or l=lung
cancer). In this model, a visit to some place “a” is thought to increase the probability of tuberculosis.

x 
d
e
t
l
b
a
s

Positive X-ray
Dyspnea (shortness of breath)
Either tuberculosis or lung cancer
Tuberculosis
Lunc cancer
Bronchitis
Visited place a
Smoker

Figure 2: Graphical model for Exercise 5 (Barber Figure 3.15).

(a) Explain which of the following independence relationships hold for all distributions that factorise
over the graph.

1. t ⊥⊥ s | d

Solution.

• There are two trails from t to s: (t, e, l, s) and (t, e, d, b, s).

• The trail (t, e, l, s) features a collider node e that is opened by the conditioning
variable d. The trail is thus active and we do not need to check the second trail
because for independence all trails needed to be blocked.

• The independence relationship does thus generally not hold.

2. l ⊥⊥ b | s

Solution.

• There are two trails from l to b: (l, s, b) and (l, e, d, b)

• The trail (l, s, b) is blocked by s (s is in a tail-tail configuration and part of the
conditioning set)

• The trail (l, e, d, b) is blocked by the collider configuration for node d.

• All trails are blocked so that the independence relation holds.

(b) Can we simplify p(l|b, s) to p(l|s)?
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Solution. Since l ⊥⊥ b | s, we have p(l|b, s) = p(l|s).

Exercise 6. More on the chest clinic (based on Barber’s exercise 3.3)

Consider the directed graphical model in Figure 2.

(a) Explain which of the following independence relationships hold for all distributions that factorise
over the graph.

1. a ⊥⊥ s | l

Solution.

• There are two trails from a to s: (a, t, e, l, s) and (a, t, e, d, b, s)

• The trail (a, t, e, l, s) features a collider node e that blocks the trail (the trail is
also blocked by l).

• The trail (a, t, e, d, b, s) is blocked by the collider node d.

• All trails are blocked so that the independence relation holds.

2. a ⊥⊥ s | l, d

Solution.

• There are two trails from a to s: (a, t, e, l, s) and (a, t, e, d, b, s)

• The trail (a, t, e, l, s) features a collider node e that is opened by the conditioning
variable d but the l node is closed by the conditioning variable l: the trail is
blocked

• The trail (a, t, e, d, b, s) features a collider node d that is opened by conditioning
on d. On this trail, e is not in a head-head (collider) configuration) so that all
nodes are open and the trail active.

• Hence, the independence relation does generally not hold.

(b) Let g be a (deterministic) function of x and t. Is the expected value E[g(x, t) | l, b] equal to
E[g(x, t) | l]?

Solution. The question boils down to checking whether x, t ⊥⊥ b | l. For the indepen-
dence relation to hold, all trails from both x and t to b need to be blocked by l.

• For x, we have the trails (x, e, l, s, b) and (x, e, d, b)

• Trail (x, e, l, s, b) is blocked by l

• Trail (x, e, d, b) is blocked by the collider configuration of node d.

• For t, we have the trails (t, e, l, s, b) and (t, e, d, b)

• Trail (t, e, l, s, b) is blocked by l.

• Trail (t, e, d, b) is blocked by the collider configuration of node d.

As all trails are blocked we have x, t ⊥⊥ b | l and E[g(x, t) | l, b] = E[g(x, t) | l].
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Exercise 7. Hidden Markov models

This exercise is about directed graphical models that are specified by the following DAG:

y1 y2 y3 y4

x1 x2 x3 x4

These models are called “hidden” Markov models because we typically assume to only observe the yi and
not the xi that follow a Markov model.

(a) Show that all probabilistic models specified by the DAG factorise as

p(x1, y1, x2, y2, . . . , x4, y4) = p(x1)p(y1|x1)p(x2|x1)p(y2|x2)p(x3|x2)p(y3|x3)p(x4|x3)p(y4|x4)

Solution. From the definition of directed graphical models it follows that

p(x1, y1, x2, y2, . . . , x4, y4) =

4∏
i=1

p(xi|pa(xi))

4∏
i=1

p(yi|pa(yi)).

The result is then obtained by noting that the parent of yi is given by xi for all i, and that
the parent of xi is xi−1 for i = 2, 3, 4 and that x1 does not have a parent (pa(x1) = ∅).

(b) Derive the independencies implied by the ordered Markov property with the topological ordering
(x1, y1, x2, y2, x3, y3, x4, y4)

Solution.

yi ⊥⊥ x1, y1, . . . , xi−1, yi−1 | xi xi ⊥⊥ x1, y1, . . . , xi−2, yi−2, yi−1 | xi−1

(c) Derive the independencies implied by the ordered Markov property with the topological ordering

(x1, x2, . . . , x4, y1, . . . , y4).

Solution. For the xi, we use that for i ≥ 2: pre(xi) = {x1, . . . , xi−1} and pa(xi) = xi−1.
For the yi, we use that pre(y1) = {x1, . . . , x4}, that pre(yi) = {x1, . . . , x4, y1, . . . , yi−1} for
i > 1, and that pa(yi) = xi. The ordered Markov property then gives:

x3 ⊥⊥ x1 | x2 x4 ⊥⊥ {x1, x2} | x3
y1 ⊥⊥ {x2, x3, x4} | x1 y2 ⊥⊥ {x1, x3, x4, y1} | x2

y3 ⊥⊥ {x1, x2, x4, y1, y2} | x3 y4 ⊥⊥ {x1, x2, x3, y1, y2, y3} | x4

(d) Does y4 ⊥⊥ y1 | y3 hold?

Solution. The trail y1−x1−x2−x3−x4−y4 is active: none of the nodes is in a collider
configuration, so that their default state is open and conditioning on y3 does not block
any of the nodes on the trail.

While x1 − x2 − x3 − x4 forms a Markov chain, where e.g. x4 ⊥⊥ x1 | x3 holds, this not so
for the distribution of the y’s.
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Exercise 8. Alternative characterisation of independencies

We have seen that x ⊥⊥ y|z is characterised by p(x, y|z) = p(x|z)p(y|z) or, equivalently, by p(x|y, z) =
p(x|z). Show that further equivalent characterisations are

p(x, y, z) = p(x|z)p(y|z)p(z) and (1)

p(x, y, z) = a(x, z)b(y, z) for some non-neg. functions a(x, z) and b(x, z). (2)

The characterisation in Equation (2) will be important for undirected graphical models.

Solution. We first show the equivalence of p(x, y|z) = p(x|z)p(y|z) and p(x, y, z) = p(x|z)p(y|z)p(z):
By the product rule, we have

p(x, y, z) = p(x, y|z)p(z).

If p(x, y|z) = p(x|z)p(y|z), it follows that p(x, y, z) = p(x|z)p(y|z)p(z). To show the opposite
direction assume that p(x, y, z) = p(x|z)p(y|z)p(z) holds. By comparison with the decomposition
in the product rule, it follows that we must have p(x, y|z) = p(x|z)p(y|z) whenever p(z) > 0 (it
suffices to consider this case because for z where p(z) = 0, p(x, y|z) may not be uniquely defined
in the first place).

Equation (1) implies (2) with a(x, z) = p(x|z) and b(y, z) = p(y|z)p(z). We now show the
inverse. Let us assume that p(x, y, z) = a(x, z)b(y, z). By the product rule, we have

p(x, y|z)p(z) = a(x, z)b(y, z). (S.50)

(S.51)

Summing over y gives ∑
y

p(x, y|z)p(z) = p(z)
∑
y

p(x, y|z) (S.52)

= p(z)p(x|z) (S.53)

Moreover ∑
y

p(x, y|z)p(z) =
∑
y

a(x, z)b(y, z) (S.54)

= a(x, z)
∑
y

b(y, z) (S.55)

so that

a(x, z) =
p(z)p(x|z)∑

y b(y, z)
(S.56)

Since the sum of p(x|z) over x equals one we have∑
x

a(x, z) =
p(z)∑
y b(y, z)

. (S.57)

Now, summing p(x, y|z)p(z) over x yields∑
x

p(x, y|z)p(z) = p(z)
∑
x

p(x, y|z). (S.58)

= p(y|z)p(z) (S.59)
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We also have ∑
x

p(x, y|z)p(z) =
∑
x

a(x, z)b(y, z) (S.60)

= b(y, z)
∑
x

a(x, z) (S.61)

(S.57)
= b(y, z)

p(z)∑
y b(y, z)

(S.62)

so that

p(y|z)p(z) = p(z)
b(y, z)∑
y b(y, z)

(S.63)

We thus have

p(x, y, z) = a(x, z)b(y, z) (S.64)

(S.56)
=

p(z)p(x|z)∑
y b(y, z)

b(y, z) (S.65)

= p(x|z)p(z) b(y, z)∑
y b(y, z)

(S.66)

(S.63)
= p(x|z)p(y|z)p(z) (S.67)

which is Equation (1).

Exercise 9. More on independencies

This exercise is on further properties and characterisations of statistical independence.

(a) Without using d-separation, show that x ⊥⊥ {y, w} | z implies that x ⊥⊥ y | z and x ⊥⊥ w | z.
Hint: use the definition of statistical independence in terms of the factorisation of pmfs/pdfs.

Solution. We consider the joint distribution p(x, y, w|z). By assumption

p(x, y, w|z) = p(x|z)p(y, w|z) (S.68)

We have to show that x ⊥⊥ y|z and x ⊥⊥ w|z. For simplicity, we assume that the variables
are discrete valued. If not, replace the sum below with an integral.

To show that x ⊥⊥ y|z, we marginalise p(x, y, w|z) over w to obtain

p(x, y|z) =
∑
w

p(x, y, w|z) (S.69)

=
∑
w

p(x|z)p(y, w|z) (S.70)

= p(x|z)
∑
w

p(y, w|z) (S.71)

Since
∑

w p(y, w|z) is the marginal p(y|z), we have

p(x, y|z) = p(x|z)p(y|z), (S.72)

which means that x ⊥⊥ y|z.
To show that x ⊥⊥ w|z, we similarly marginalise p(x, y, w|z) over y to obtain p(x,w|z) =
p(x|z)p(w|z), which means that x ⊥⊥ w|z.
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(b) For the directed graphical model below, show that the following two statements hold without using
d-separation:

x ⊥⊥ y and (3)

x 6⊥⊥ y | w (4)

x z

w

y

The exercise shows that not only conditioning on a collider node but also on one of its descen-
dents activates the trail between x and y. You can use the result that x ⊥⊥ y|w ⇔ p(x, y, w) =
a(x,w)b(y, w) for some non-negative functions a(x,w) and b(y, w).

Solution. The graphical model corresponds to the factorisation

p(x, y, z, w) = p(x)p(y)p(z|x, y)p(w|z).

For the marginal p(x, y) we have to sum (integrate) over all (z, w)

p(x, y) =
∑
z,w

p(x, y, z, w) (S.73)

=
∑
z,w

p(x)p(y)p(z|x, y)p(w|z) (S.74)

= p(x)p(y)
∑
z,w

p(z|x, y)p(w|z) (S.75)

= p(x)p(y)
∑
z

p(z|x, y)︸ ︷︷ ︸
1

∑
w

p(w|z)︸ ︷︷ ︸
1

(S.76)

= p(x)p(y) (S.77)

Since p(x, y) = p(x)p(y) we have x ⊥⊥ y.

For x 6⊥⊥ y|w, compute p(x, y, w) and use the result x ⊥⊥ y|w ⇔ p(x, y, w) = a(x,w)b(y, w).

p(x, y, w) =
∑
z

p(x, y, z, w) (S.78)

=
∑
z

p(x)p(y)p(z|x, y)p(w|z) (S.79)

= p(x) p(y)
∑
z

p(z|x, y)p(w|z)︸ ︷︷ ︸
k(x,y,w)

(S.80)

Since p(x, y, w) cannot be factorised as a(x,w)b(y, w), the relation x ⊥⊥ y|w cannot gener-
ally hold.
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Exercise 10. Independencies in directed graphical models

Consider the following directed acyclic graph.

x1

x2

x3

x4

x5

x6

x7

x8

x9

For each of the statements below, determine whether it holds for all probabilistic models that factorise
over the graph. Provide a justification for your answer.

(a) p(x7|x2) = p(x7)

Solution. Yes, it holds. x2 is a non-descendant of x7, pa(x7) = ∅, and hence, by the
local Markov property, x7 ⊥⊥ x2, so that p(x7|x2) = p(x7).

(b) x1 6⊥⊥ x3

Solution. No, does not hold. x1 and x3 are d-connected, which only implies indepen-
dence for some and not all distributions that factorise over the graph. The graph generally
only allows us to read out independencies and not dependencies.

(c) p(x1, x2, x4) ∝ φ1(x1, x2)φ2(x1, x4) for some non-negative functions φ1 and φ2.

Solution. Yes, it holds. The statement is equivalent to x2 ⊥⊥ x4 | x1. There are three
trails from x2 to x4, which are all blocked:

1. x2 − x1 − x4: this trail is blocked because x1 is in a tail-tail connection and it is
observed, which closes the node.

2. x2 − x3 − x6 − x5 − x4: this trail is blocked because x3, x6, x5 is in a collider configu-
ration, and x6 is not observed (and it does not have any descendants).

3. x2 − x3 − x6 − x8 − x7 − x4: this trail is blocked because x3, x6, x8 is in a collider
configuration, and x6 is not observed (and it does not have any descendants).

Hence, by the global Markov property (d-separation), the independency holds.

(d) x2 ⊥⊥ x9 | {x6, x8}

Solution. No, does not hold. Conditioning on x6 opens the collider node x4 on the trail
x2 − x1 − x4 − x7 − x9, so that the trail is active.

(e) x8 ⊥⊥ {x2, x9} | {x3, x5, x6, x7}
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Solution. Yes, it holds. {x3, x5, x6, x7} is the Markov blanket of x8, so that x8 is inde-
pendent of remaining nodes given the Markov blanket.

(f) E[x2 · x3 · x4 · x5 · x8 | x7] = 0 if E[x8 | x7] = 0

Solution. Yes, it holds. {x2, x3, x4, x5} are non-descendants of x8, and x7 is the parent
of x8, so that x8 ⊥⊥ {x2, x3, x4, x5} | x7. This means that E[x2 · x3 · x4 · x5 · x8 | x7] =
E[x2 · x3 · x4 · x5 | x7]E[x8 | x7] = 0.

Exercise 11. Independencies in directed graphical models

Consider the following directed acyclic graph:

m1 s1

u1 v1

x1 y1

θ1

m2 s2

u2 v2

x2 y2

θ2

For each of the statements below, determine whether it holds for all probabilistic models that factorise
over the graph. Provide a justification for your answer.

(a) x1 ⊥⊥ x2

Solution. Does not hold. The trail x1− θ1− θ2− x2 is active (unblocked) because none
of the nodes is in a collider configuration or in the conditioning set.

(b) p(x1, y1, θ1, u1) ∝ φA(x1, θ1, u1)φB(y1, θ1, u1) for some non-negative functions φA and φB

Solution. Holds. The statement is equivalent to x1 ⊥⊥ y1 | {θ1, u1}. The conditioning set
{θ1, u1} blocks all trails from x1 to y1 because they are both only in serial configurations
in all trails from x1 to y1, hence the independency holds by the global Markov property.
Alternative justification: the conditioning set is the Markov blanket of x1, and x1 and y1
are not neighbours which implies the independency.

(c) v2 ⊥⊥ {u1, v1, u2, x2} | {m2, s2, y2, θ2}

Solution. Holds. The conditioning set is the Markov blanket of v2 (the set of parents,
children, and co-parents): the set of parents is pa(v2) = {m2, s2}, y2 is the only child of
v2, and θ2 is the only other parent of y2. And v2 is independent of all other variables given
its Markov blanket.

(d) E[m2 | m1] = E[m2]
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Solution. Holds. There are four trails from m1 to m2, namely via x1, via y1, via x2, via
y2. In all trails the four variables are in a collider configuration, so that each of the trails is
blocked. By the global Markov property (d-separation), this means that m1 ⊥⊥ m2 which
implies that E[m2 | m1] = E[m2].

Alternative justification 1: m2 is a non-descendent of m1 and pa(m2) = ∅. By the
directed local Markov property, a variable is independent from its non-descendents given
the parents, hence m2 ⊥⊥ m1.

Alternative justification 2: We can choose a topological ordering where m1 and m2 are the
first two variables. Moreover, their parent sets are both empty. By the directed ordered
Markov, we thus have m1 ⊥⊥ m2.
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