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Recap

» Variational principle of performing inference via optimisation.

» Maximising the evidence lower bound (ELBO) with respect to
the variational distribution allows us to (approximately)
compute the marginal and the conditional from the joint.

» Overview of how to use the variational principle to solve
inference and learning tasks.

» For parameter estimation in presence of unobserved variables:
Coordinate ascent on the ELBO leads to the (variational) EM
algorithm.
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Program

1. HMM parametrisation and the learning problem
2. Options for learning the parameters

3. Learning the parameters by EM
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Program

1. HMM parametrisation and the learning problem
o Assumptions: discrete case and stationarity
e Constraints on the parameters
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Hidden Markov model

Specified by
» DAG (representing the independence assumptions)

» Transition distribution p(h;j|h;i_1)
» Emission distribution p(v;|h;)
» Initial state distribution p(h;)
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The classical inference problems

» C(lassical inference problems:

>
>
>
>

>

Filtering: p(h¢|vy.¢)
Smoothing: p(h¢|vi.,) where t < u
Prediction: p(h¢|v1.,) and/or p(v¢|vi.,) where t > u

Most likely hidden path (Viterbi alignment):
argmaxy, - p(hy:¢|vi:t)

Posterior sampling (forward filtering, backward sampling):

hl:t ~ p(hl:t‘ Vl:t)

» Inference problems can be solved by message passing.

» Requires that the transition, emission, and initial state
distributions are known.
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Learning problem

» Data: D ={D,...,Dp}, where each D; is a sequence of
visibles of length d;, i.e.

D; = (vl(j), e Vg))

» Assumptions:
» All variables are discrete: h; € {1,... K}, vy € {1,..., M}.
» Stationarity

» Parametrisation:
» Transition distribution is parametrised by the matrix A

p(h; = klhi_1 = k"; A) = Ak K (Ay/ 4 convention is also used)
» Emission distribution is parametrised by the matrix B
p(vi = m|h; = k;B) = B« (By.m convention is also used)
» |nitial state distribution is parametrised by the vector a
p(h1 = k;a) = ax
» Task: Use the data D to learn A, B, and a
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Learning problem

» Since A, B, and a represent (conditional) distributions, the
parameters are constrained to be non-negative and to satisfy

Zp(h = k|h; 1_k’)_ZAkk/_1 for all k'
Zp(v,—myh—k)—zgmk_ for all k

Zp(hlzk)zzak:].
k=1

k=1

» Note: Much of what follows holds more generally for HMMs
and does not use the stationarity assumption or that the h;
and v; are discrete random variables.

» The parameters together will be denoted by 6.
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Program

1. HMM parametrisation and the learning problem
o Assumptions: discrete case and stationarity
e Constraints on the parameters
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Program

2. Options for learning the parameters
o Learning by gradient ascent on the log-likelihood or by EM
o Comparison
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Options for learning the parameters

» The model p(h,v;8) is normalised but we have unobserved
variables.
90|d]

» Option 1: Gradient ascent on the log-likelihood

Hnew — 00|d —l_ € Z Ep(h|Dj;00|d) [vO |Og p(h7 DJ’ 0)
j=1

» Option 2: EM algorithm

Onew = arglglax Z Ep(h|Dj;90|d) [|Og p(h, Dj; 0)]
j=1

» For HMMs, both are possible since the required posteriors can
be computed with sum-product message passing.
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Options for learning the parameters

Option 1: Onew = o + € .1 Ep(n|D;i004) [Vev log p(h, Dj; 0)

Gold]

» Both require computation of the posterior expectation.
» |n opt 2, assume the “M" step is performed by gradient ascent,

Option 2: Onew = argmaxg ijl Ep(h|Dj:90|d) [log p(h, D;j; 0)]
» Similarities:

0'=6+c Z IB:“P(hmj:ﬁ’oml) [Ve log p(h, Dj; 0)]
j=1

where 0 is initialised with 0.4, and the final 8" gives 0.
If only one gradient step is taken, option 2 becomes option 1.

» Differences:

» Unlike option 2, option 1 requires re-computation of the
posterior after each € update of @, which may be costly.

» In some cases (including HMMs), the “M" /argmax step can be
performed analytically in closed form.
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Program

3. Learning the parameters by EM
o E-step
o M-step
o EM (Baum-Welch) algorithm
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The EM objective function

» Denote the objective in the EM algorithm by J(8,60.4),

J(67 HOId) — Z Ep(h|Dj;90|d) [Iog p(h7 Djv 0)]
j=1
» Expected log-likelihood after filling-in the missing data

» We show next that for the HMM model in general, the full
posteriors p(h|Dj; O44) are not needed but just

p(hi, hi—1 | Dj; 0oa)  p(hi | Dj; Oold)-

They can be obtained with the alpha-beta recursion
(sum-product algorithm).

» Posteriors need to be computed for each observed sequence
D;, and need to be re-computed after updating 6.
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The EM objective function
» The HMM model factorises as

d
p(h,v; 8) = p(hy; a)p(va|hy; B) [ | p(hilhi—1; A)p(vi|hs; B)

=2

» For sequence Dj, we have

log p(h, Dj; 8) = log p(hy; a) + log p(vy”)| hy; B)+

dj
> log p(hilhi—1; A) + log p(v?|h;; B)
=2
» Since
EP(MD :00ld) [|Og p(hl a)] — Lp(h1|Dj;0014) [|Og p(hl a)]
Ep(h|D;:004) 1108 P(hilhi—1; A)] = Ep(h, h_1|D;:044) [108 P(hilhi—1; A)]

Epthip;0ue) |08 PV B)} = By 1p;0.0) |l08 (v i B)

we do not need the full posterior but only the marginal posteriors
and the joint of the neighbouring variables.
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The EM objective function

With the factorisation (independencies) in the HMM model, the
objective function thus becomes

J(Ha Hold) — Z IEf’p(h|Dj;90|d) [log p(h7 Dj; 9)]
=1

— Z EP(h1|Dj;90ld) [log p(h1;a)]+
j=1

n d
Z Z Ep(hiahi—l‘pj;eold) [log p(hi‘hi—l; A)]_|_
=1 i=2

n d

Z Z Ep(hi|Dj:0014) {|Og P(Vi(j) hi; B)}

j=1i=1

In the derivation so far we have not yet used the assumed
parametrisation of the model. We insert these assumptions next.
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The term for the initial state distribution

» \We have assumed that
p(hlzk;a):ak k:].,...,K

which we can write as
1(hi=k
p(hi;a) = 3k( =
k

(like for the Bernoulli model, see slides Basics of Model-Based Learning)

» The log pmf is thus

log p(hi;a) = ) 1(h1 = k) log ax
k

» Hence

Ep(hy|D;:044) [108 P(h1;2)] = Y Ep(nyp;:044) [L(h1 = k)] log ax
P

— Z p(h1 — k‘Dj; 90|d) log ay
k
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The term for the transition distribution

» \We have assumed that
p(hi:k’h,’_lzk,;A):Ak’k/ k,k/:].,...K
which we can write as

1(hi=k,hi_1=K’
p(hilhi—1; A) = H Ak,(k’ =

k. k'
(see slides Basics of Model-Based Learning)
» Further:
log p(hilhi—1; A) = > 1(hi = k, hi—1 = K') log Ak x

%

> Hence Epp, ni_1D;:6.4) 1108 P(hi|hi—1; A)] equals

Y B 1|Dji04) [L(hi = k, hi_1 = K')] log Ay i
k., k'

=" p(hi = k. hi_y = K'|Dj; 0g14) log A i
kK’

PMR - Learning for Hidden Markov Models — ©Michael U. Gutmann, UoE, 2018-2023 cc BY 4.0 ©@® 18 / 25


https://creativecommons.org/licenses/by/4.0/

The term for the emission distribution

We can do the same for the emission distribution.
With

p(vilhi; B) = H B]l(v, m,hi=k) H Bﬂ(v, m)1(hi=k)
we have

]EP(hi|Dj;90|d) [|Og p(v,-(j)’h,'; B)} m— Z ﬂ(vi(j) — m)p(h,- = k‘Dj, Hold) |Og ijk

m, k

PMR - Learning for Hidden Markov Models — ©Michael U. Gutmann, UoE, 2018-2023 cc BY 4.0 ©@® 19 / 25


https://creativecommons.org/licenses/by/4.0/

E-step for discrete-valued HMM

» Putting all together, we obtain the EM objective function for
the HMM with discrete visibles and hiddens.

J(0,0014) => > p(h1 = k|Dj; Ooq) log ax+

=1 k
n d
> 3 plhi =k, hi—1 = K'|Dj; Ooi) log Ax i+
i=1i=2 kK’
n d; _
>0 1(v”) = m)p(h; = k|Dj, 0014) log Bm «
Jj=1i=1 m,k

» The objectives for a, and the columns of A and B decouple.

» Does not decouple in separate objectives for all parameters
because of the constraint that the elements of a have to sum
to one, and that the columns of A and B have to sum to one.
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M-step

We discuss the details for the maximisation with respect to a.
The other cases are done equivalently.

Optimisation problem:

n
méc\x Z Z p(hl = k‘Dj; Hold) |og dk
j=1 k
subject to a, > 0 Z a, =1
k

The non-negativity constraint could be handled by
re-parametrisation, but the constraint is here not active (the
objective is not defined for ax < 0) and can be dropped.

The normalisation constraint can be handled by using the
methods of Lagrange multipliers (see e.g. Barber Appendix A.6).
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M-step

> Lagrangian: > ., >, p(h1 = k|Dj; Ooid) log ax — AM(>_, ak — 1)
» The derivative with respect to a specific a; is

1
dj

> p(hy = i|Dj; O1a) A

Jj=1

» Gives the necessary condition for optimality

1 < _
a =+ Zp(hl = i|Dj; Oo1d)
=1

» The derivative with respect to A\ gives back the constraint
o=
i

Set A =3_;> iy p(h1 = i|Dj; Ooiq) to satisfy the constraint.
» The Hessian of the Lagrangian is negative definite, which

shows that we have found a maximum.
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M-step

» Since > . p(h1 = i|Dj; Oo4) = 1, we obtain A = n so that

1 n
= — hi1 = k|D;; 0,
ay HZP(l D;; Oo14)

[average joint proba]
Jj=1

Average of all posteriors of h; obtained by message passing.

» Equivalent calculations give

D i1 S, p(hi = k, hioy = K'|Dj; Og1a)

Ak’k/ - n dj /
Zk Zj:l Zi:2 P(hi = k,hi_1 =k |Dj; Hold)
normalise: converts
and joint to conditional
o 2 Xt Wy = mp(h = K|Dj; Go)
m,k —

TS S 1w = m)p(h = k|Dj; Oaa)

Inferred posteriors obtained by message passing are averaged over
different sequences D; and across each sequence (stationarity).
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EM for discrete-valued HMM (Baum-Welch algorithm)

Given parameters 04

1. For each sequence D; compute the posteriors
p(hi, hi—1 | Dj; Ooid) p(hi | Dj; Ooid)
using the alpha-beta recursion (sum-product algorithm)

2. Update the parameters

1 n
= =3 p(h = k|D}; 6,
A = — p(h1 Dj; Oo14)

j=1
D i1 S, p(hi =k, hi_y = K'|Dj; Bo14)
Dk Zj:l Z,iz p(hi =k, hi_1 = k'|Dj; Ooiq)
D v/ z,f’ild 1(v”) = m)p(hi = KIDj: Boi)
TS S 1Y = m)p(h = k|Dj; 0014)

Repeat step 1 and 2 using the new parameters for 0,4. Stop if change in

Ak ke =

likelihood or parameters is less than a threshold.
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Program recap

1. HMM parametrisation and the learning problem
o Assumptions: discrete case and stationarity
o Constraints on the parameters

2. Options for learning the parameters
o Learning by gradient ascent on the log-likelihood or by EM
e Comparison

3. Learning the parameters by EM
o E-step
o M-step
o EM (Baum-Welch) algorithm
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