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Recap

» Learning and inference often involves integrals that are hard
to compute.

» For example:
> Marginalisation/inference: p(x) = | p(x,y)dy

» Likelihood in case of unobserved variables:
L(8) = p(D;0) = |, p(u, D; 0)du

» We here discuss a variational approach to (approximate)
inference and learning.
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History

Variational methods have a long history, in particular in physics.
For example:
» Fermat's principle (1650) to explain the path of light: “light
travels between two given points along the path of shortest
time” (see e.g. http://wuw.feynmanlectures.caltech.edu/I_26.html)

» Principle of least action in classical mechanics and beyond (see

e.g. http://www.feynmanlectures.caltech.edu/II_19.html)
» Finite elements methods to solve problems in fluid dynamics
or civil engineering.
Loosely speaking: the general idea is to frame the original problem
in terms of an optimisation problem.
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Program

1. Preparations
2. The variational principle

3. Application to inference and learning
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Program

1. Preparations
o Concavity of the logarithm and Jensen’s inequality
o Kullback-Leibler divergence and its properties
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log(u) is a concave function
» log(u) is a concave function
log((1 —a)uy +aup) > (1—a)log(uy) + alog(uy) a € [0,1]
(1 — a)x 4+ ay with a € [0, 1] linearly interpolates between x and y.

» log(average) > average (log)

log(u)
» Generalisation

06 Elg(9)] > El0g8(x)] | /

with g(x) > 0 ty tz '

log(u1) |

» Called Jensen’s inequality for concave functions.
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Kullback-Leibler divergence

» Kullback Leibler divergence KL(p||q)
p(x P\X
KL(pllq) = / p(x) log 2 x = Ep(x) ['Og Q] (1)
q(x)
» Properties

» KL(p||g) = 0 if and only if (iff) p=gq
(they may be different on sets of probability zero under p)

> KL(p||q) # KL(ql|p)
> KL(p|lg) >0

» Non-negativity follows from the concavity of the logarithm.

PMR - Variational Inference and Learning | — ©Michael U. Gutmann, UoE, 2018-2023 ccC BY 4.0 ©@Q® 7/ 38


https://creativecommons.org/licenses/by/4.0/

Non-negativity of the KL divergence

Non-negativity follows from the concavity of the logarithm.

—KL(pl|q) = —Ep) [Iog ’; 8]
= Epx) [|0g ZEX]
<log Epx [ZE’;;]

N\ 7

| p(x)a(x)/p(x)dx=1
Hence —KL(p||q) < log(1) = 0 and thus

KL(p||g) >0

PMR - Variational Inference and Learning | — ©Michael U. Gutmann, UoE, 2018-2023 ccC BY 4.0 ©@Q®

(2)
(3)

8 /38


https://creativecommons.org/licenses/by/4.0/

KL divergence minimisation and MLE for iid data

» Assume your data xi,...,X, is sampled iid from p.(x).
» Your model is p(x; @). Consider KL div KL(p.«(x)||p(x;8))

KL(p- () (i) = Ep. o) [l0g 701 (6)

= Ep*(x) log p. (X) — Ep*(x) log p(X; 9) (7)

> argming KL(p«(x)||p(x; 8)) = argmaxy E, (x) log p(x; 0)

> Approximating the expectation E,_(
gives log-likelihood (scaled by 1/n)

) with a sample average

%z(e) — % Z log p(xi; 0) (8)
i=1

> Hence: Oy g = argmaxy £(0) ~ argming KL(p.(x)||p(x; 6))
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Asymmetry of the KL divergence

Blue: mixture of Gaussians p(x) (fixed)
Green: (unimodal) Gaussian g that minimises KL(g||p)

Red: (unimodal) Gaussian g that minimises KL(p||q)

. . —

0.35

0.3

0.25

0.2 n

0.15

01

0.05

L

| 1
-30 -20 -10 0 10 20 30

Barber Figure 28.1, Section 28.3.4
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Asymmetry of the KL divergence

argmin, KL(g||p) = argmin, | g(x) log

Mdx

p(x)

» Optimal g avoids regions where p is small.
(but can be small where p is large)

» Produces good local fit, “mode seeking”

argmin, KL(p||q) = argmin, [ p(x) log

de

q(x)

» Optimal g is nonzero where p is nonzero

(and does not care about regions where p is small)

» Corresponds to MLE; produces global fit/moment matching
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Asymmetry of the KL divergence

Blue: mixture of Gaussians p(x) (fixed)
Red: optimal (unimodal) Gaussians g(x)

Global moment matching (left) versus mode seeking (middle and

right). (two local minima are shown)
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Bishop Figure 10.3
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Program

1. Preparations
o Concavity of the logarithm and Jensen’s inequality
o Kullback-Leibler divergence and its properties
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Program

2. The variational principle
e Variational lower bound
o Maximising the ELBO to compute the marginal and
conditional from the joint
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Variational lower bound: auxiliary distribution

Consider joint pdf /pmf p(x,y) with marginal p(x) = [ p(x,y)dy
» We can write p(x) as

o 4R p(x,y)
px) = [ pley) (5l Eq(y"‘)['q(yrx)] (9)

where g(y|x) is an auxiliary distribution (called the variational
distribution in the context of variational inference/learning)
for a given x.

» Log marginal is

p(X, y)] (10)

Iog p(x) — |Og Eq(y\x) [q(y\x)

» Approximating the expectation with a sample average leads to
importance sampling. Another approach is to work with the
concavity of the logarithm instead.
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Variational lower bound: concavity of the logarithm

» Concavity of the log gives

log p(x) = log Eq(y|x) [Z((;"xy))] > Eq(ylx) [Iog [;(();":))] (11)

This is the variational lower bound for log p(x).

» Right-hand side is called the (variational) free energy Fx(q) or
the evidence lower bound (ELBO) L4(q)

Lx(q) = Eqyx) [|0g Z(();":))] (12)

» Since g is a function, the ELBO is a functional, which is a
mapping that depends on a function.
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Properties of the ELBO

B (x,y)
Lx(q) = Eq(y|x) ['Og 5<y|§)}

» By manipulating the definition of the ELBO, we obtain the
following equivalent forms

Lx(q) = log p(x) — KL(q(y|x)||p(y|x)) (13)
= Eq(yx) log p(x]y) — KL(q(y[x)[[p(y))  (14)
— Eq(y|x) log p(X7 y) + H(Q) (15)

where p(y) is the marginal of p(x,y) and #(q) is the entropy
of g.

» Entropy is a measure of randomness/variability of a variable

H(q) = —Eqyx) [log g(y[x)] (16)

Larger entropy means more variability.
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Properties of the ELBO (proof)

» First expression:

B . p(x,y) B _O p(y[x)p(x)
Lx(q) = Eq(yjx) [' g q(y\x)] Fatyl _I ®aylx) ]
= Eq(yjx) |log 5g xi Flogp (X)]
= Eq(ylx) _Iog 58 3] + log p(x)

= —KL(q(y|x)||p(y|x)) + log p(x)

» Second expression is obtained similarly but using

p(x,y) = p(x|y)p(y) instead of p(x,y) = p(y|x)p(x) above.
» Third expression from the definition of the entropy.
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Tightness of the ELBO

> From Lx(q) = log p(x) — KL(q(y[x)||p(y[x)) and
non-negativity of the KL divergence, we have

1. log p(x) > Lx(q) (as before)

2. log p(x) = Lx(q) < q(y|x) = p(y|x)
» Maximising L(q) with respect to g yields both log p(x) and
the conditional p(y|x) at the same time.

» Makes sense because if we know p(x,y) and p(x), we know
p(y|x), and vice versa, since p(y|x) = p(x,y)/p(x).
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Alternative approach

» \We started from the task of approximating the marginal

p(x) = [ p(x,y)dy (17)

» Alternative starting point is the task of approximating the
conditional p(y|x) for some given x by a distribution g(y|x).

» Measuring the quality of the approximation q(y|x) by
KL(q(y[x)[lp(y[x)) gives

KL(q(y[x)|[p(y[x)) = log p(x) — Lx(q) (18)

Same key result as before.
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Variational principle

» By maximising the ELBO

p(X, y)]

Ex(q) — IE‘j‘q(y|x) [|Og q(y\x)

we can split the joint p(x,y) into p(x) and p(y|x)

log p(x) = max Lx(q)

p(y|x) = Argmax Ly(q)

» Highlights the variational principle: Inference becomes
optimisation.
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Solving the optimisation problem

£x() = Eq(ype |log 254 |
» Difficulties when maximising the ELBO:

» Learning of a pdf/pmf g(y|x)
» Maximisation when objective involves E ) that depends on g

» Restrict search space to a family Q of variational distributions
q(y|x) for which L£4(q) is computable.
» Family O specified by

» independence assumptions, e.g. q(y|x) =]]; q(yi|x), which
corresponds to “mean-field” variational inference
» parametric assumptions, e.g. q(y;|x) = N (y;; 1i(x), 02(x))

» Discussed in more detail later.

» L.(q) can be computed analytically in closed form only in
special cases.
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Program

2. The variational principle
e Variational lower bound
o Maximising the ELBO to compute the marginal and
conditional from the joint
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Program

3. Application to inference and learning
o Inference: approximating posteriors
o Learning with Bayesian models
o Learning with statistical models and unobserved variables
o (Variational) EM algorithm
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Approximate posterior inference

» Inference task: given value x = x, and joint pdf/pmf p(x,y),

compute p(y|xo).
» Variational approach: estimate the posterior by solving an

optimisation problem

p(y|xo) = argmax Ly, (q) (19)
qgeQ

Q is the set of pdfs/pmfs in which we search for the solution

» From the basic property of the ELBO in Equation (13)

log p(xo) = KL(q(y[x0)lp(yx0)) + Lx,(q) = const  (20)

» Because the sum of the KL and ELBO is constant, we have

argmax Ly, (q) = argmin KL(q(y[xo)|[P(y%o))  (21)
qeQ qeQ
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Posterior as compromise between prior and fit

» Equivalent forms of the ELBO:

Ly, (q) = Eq(yxo) log p(xoly) —KL(q(y(x0)|Ip(y))  (22)

» By maximising L4 (q) we find a g that

» produces y which are likely explanations of x,
» stays close to the prior p(y)

» If included in the search space Q, p(y|x,) is the optimal g,
which means that the posterior fulfils the two desiderata best.
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As compromise between variable and likely imputations

» Equivalent forms of the ELBO:

Lyx.(q) = EQ(Y’XO) log p(x0,y) + H(q) (23)

» By maximising L4 (q) we find a g that

» produces likely imputations (filled-in data) y
» is maximally variable

» If included in the search space Q, p(y|x,) is the optimal g,
which means that the posterior fulfils the two desiderata best.
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Nature of the approximation

argmaxgc g Lx,(q) = argmingc o KL(q(y[xo)|[p(y[x0))

» When minimising KL(q||p) with respect to g, g will try very
hard to be zero where p is small.

» Assume true posterior is correlated bivariate Gaussian and we
work with @ = {q(y[xo) : q(¥/x0) = q(y1]%0)q(y2|x0)}

(independence but no parametric assumptions)

1
» Optimal g is Gaussian.

) y
» Mean is correct but ’

variances dictated by the
variances of p(y|xo) 0.5
along the y; and y» axes. mean field

: : : approximation
» Posterior variance is

underestimated. 0

0 0.5 Y1 1
(Bishop, Figure 10.2)
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Nature of the approximation

» Assume that true posterior is multimodal, but that the family
of variational distributions Q only includes unimodal
distributions.

» The optimal g(y|x,) only covers one mode: “mode-seeking
behaviour”.

N

Blue: true posterior
\ Red: approximation

local optimum local optimum

Bishop Figure 10.3 (adapted)
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Learning by Bayesian inference

» Task 1: For a Bayesian model p(x|0)p(6) = p(x,0), compute
the posterior p(0|D)

» Formally the same problem as before: D = x, and 6 =Y.

» Task 2: For a Bayesian model p(v,h|@)p(0) = p(v, h, ),
compute the posterior p(8|D) where the data D are for the
visibles v only.

» With the equivalence D = x,, and (h,0) =y, we are formally
back to the problem just studied.
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Parameter estimation in presence of unobserved variables

» Task: For the model p(v, h; @), estimate the parameters 6
from data D on the visibles v only (h is unobserved).

» To evaluate the log likelihood function ¢(8), we need to
evaluate the integral

0(0) =logp(D;0) = Iog/hp(D, h; 8)dh, (24)

which is generally intractable.

» We could approximate #(0) and its gradient using Monte
Carlo integration.

» Here: use the variational approach.
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Parameter estimation in presence of unobserved variables

» We had
B oy PXY)
£(0) = Ea |18 50 (%)
= log p(x) — KL(qg(y[x)||p(y[x)) (26)

» Substitute
x—=D, y—=h  p(xy)—=pDh06) (27)

» We then have

Lp(0,q) = Eqnp) [Iog piyz(pl”’l\l;;)g)]

= log p(D; 0) — KL(q(h|D)||p(h|D; 8))  (29)

(28)

» Notation Lp(0, q) highlights dependency on 6 and gq.
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MLE by maximising the ELBO

» Using ¢(0) for the log-likelihood log p(D; @), we have
Lp(0,q) = £(8) — KL(q(h|D)||p(h|D;6)) (30
» |f the search space Q is unrestricted or includes p(h|D; )

max Lp(0, q) = ((6) (31)

» Maximum likelihood estimation (MLE)

max Lp(60, q) = max {(0) (32)
0,9 7]

MLE = maximise the ELBO Lp(8, q) with respect to 8 and g

» Restricted search space O leads to approximate estimate of 6
and p(h|D; 0).
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Variational EM algorithm

Variational expectation maximisation (EM): maximise Lp(8, q) by
iterating between maximisation with respect to 8 and
maximisation with respect to g (coordinate ascent).

c
hes
)
>
e
k7 contour plot of the
© ELBO (free energy)
'©
C
o
)
©
©
>

>
model parameters

(Adapted from http://www.cs.cmu.edu/~tom/10-702/Zoubin-702.pdf)
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Where is the “expectation”?

» The optimisation with respect to g is called the “expectation
step”

max Lp(0, g) = max K lo
max p(0,q) max q(h|D)[ g

» Denote the best g by g* so that

p(D,h; 0)
q*(h|D) ] (34)

max Lo(6.9) = £p(6.4°) = Eq- (o) | og

which is defined in terms of an expectation and the reason for
the name “expectation step’.
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Classical EM algorithm

» Denote the parameters at iteration k by 6.

» We know that the optimal g for the expectation step is
q*(h|D) = p(h|D; 0y)

» |f we can compute the posterior p(h|D; 08,), we obtain the
(classical) EM algorithm that iterates between:

E-step: compute the expectation

Lp(0,9%) = Epnp.e,)llog p(D, h; 9)1 —Epnipe,) lo8 p(h|D; 9k2

interpretation: expected does not depend on 8 and
completed log-likelihood of @ does not need to be computed

M-step: maximise with respect to 6

Oky1 = argmax Lp(0,q%) = ATgmax Ephp;6,)[log p(D; h; 0)]
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Classical EM algorithm never decreases the log likelihood

» Assume you have updated the parameters and start iteration
k + 1 with optimisation with respect to g

max Lp(0k,q) (35)

> Optimal solution g ; is the posterior p(h|D; 6)) so that

((0k) = Lp(Ok, g11) (36)
> Optimise with respect to the 8 while keeping g fixed at gy,

max Lp(6, q11) (37)

» Due to maximisation, updated parameter @1 is such that
LD(Ok+1, Grg1) = LD(Ok; Giey1) = £(6k) (38)
» From variational lower bound: ¢(8) > Lp(8, q). Hence:
U(0kt1) = L(Ok+1, Grs1) = €(Ok)
= EM yields non-decreasing sequence ¢(01),¢(0>), .. ..
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Program recap

1. Preparations
e Concavity of the logarithm and Jensen’s inequality
e Kullback-Leibler divergence and its properties

2. The variational principle
e Variational lower bound
e Maximising the ELBO to compute the marginal and conditional
from the joint

3. Application to inference and learning
e |nference: approximating posteriors
@ Learning with Bayesian models
@ Learning with statistical models and unobserved variables
o (Variational) EM algorithm
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